PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with investigating of the first mixed problem for a fifth-order nonlinear evolutional equation which generalizes well known equation of the vibrations theory. We obtain sufficient conditions of nonexistence of a global solution in time variable.
Rocznik
Strony
735--753
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine
autor
  • Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine
autor
  • Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine
autor
  • Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine
Bibliografia
  • [1] G. Andrews, On the existence of solution to the equation utt = uxxt +
  • [2] K.T. Andrews, M. Shillor, S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity 42 (1996), 1-30.
  • [3] O. Buhrii, G. Domanska, N. Protsakh, The mixed problem for nonlinear equation of third order in Sobolev generalized spaces, Visnyk of Lviv University, Series Mathematics and Mechanics 64 (2005), 44-61.
  • [4] H.R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron. J. Qual. Theory Differ. Equ. 7 (2002), 1-21.
  • [5] M.H. Duong, Comparison and maximum principles for a class of flux-limited diffusions with external force fields, Adv. Nonlinear Anal. 2 (2016), 167-176.
  • [6] J.M. Greenberg, On the existence, uniqueness and stability of solutions of the equation = o" (ux)uxx + Xuxtx, J. Math. Anal. Appl. 25 (1969), 575-591.
  • [7] R.J. Gu, K.L. Kuttler, M. Shillor, Frictional wear of a thermoelastic beam, J. Math. Anal. Appl. 242 (2000), 212-236.
  • [8] T.J. Hughes, J.E. Marsden, Mathematical Foundation of Elasticity, C. Prentice Hall, Endlewood, 1983.
  • [9] S.P. Lavrenyuk, O.T. Panat, Unboundedness of solutions of one hyperbolic third order equation, J. Math. Sci. (N.Y.) 165 (2010) 2, 200-213.
  • [10] J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.
  • [11] Ya. Liu, R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations 244 (2008), 200-228.
  • [12] M. Lustyk, J. Janus, M. Pytel-Kudela, A.K. Prykarpatsky, The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations, Central European J. Math. 7 (2009) 3, 775-786.
  • [13] J.A.C. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with normal and friction interface laws, Nonlin. Anal. 11 (1987), 407-428.
  • [14] S.A. Messaoudi, Blow-up of positive-initial-energy solutions of nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006), 902-915.
  • [15] Ya.V. Mykytiuk, A.K. Prykarpatsky, D.L. Blackmore, The Lax solution to a Hamilton-Jacobi equation and its generalizatios: Part 2, Nonlin. Anal. 55 (2003), 629-640.
  • [16] N.K. Prykarpatska, D.L. Blackmore, A.K. Prykarpatsky, M. Pytel-Kudela, On the inf-type extremality solutions to Hamilton-Jacobi equations and some generalizatios, Miskolc Mathematical Notes 4 (2003) 2, 153-176.
  • [17] P.Ya. Pukach, The mixed problem, for strongly nonlinear equation of beam, vibrations type in bounded domain, Applied Problems of Mechanics and Mathematics 4 (2006), 59-69.
  • [18] P.Ya. Pukach, The mixed problem for some nonlinear equation of beam vibrations type in unbounded domain, Scientific Herald of Y. Fedkovych Chernivtsi National University, Mathematics 314-315 (2006), 159-170.
  • [19] P.Ya. Pukach, The mixed problem for nonlinear equation of beam vibrations type in unbounded domain, Matematychni Studii 27 (2007) 2, 139-148.
  • [20] P.Ya. Pukach, On the existence of local solutions of the mixed problem for a nonlinear fifth order evolution equation, Journal of Lviv Polytechnic National University "Physical and Mathematical Sciences" 625 (2008), 27-34.
  • [21] P.Ya. Pukach, On the unbounde.dne.ss of a solution of the mixed problem for a nonlinear-evolution equation at a finite time, Nonlinear Oscillations 14 (2012) 3, 369-378.
  • [22] N. Stromberg, L. Johansson, A. Klarbring, Derivation and analysis of a generalized standard model for a contact friction and wear, Intern. J. Solids and Structures 13 (1996), 1817-1836.
  • [23] V.I. Yerofeev, V.V. Kazhaev, N.P. Semerikova, Waves in the rods. Dispersion. Dissipation. Nonlinearity, Fizmatlit, Moscow, 2002.
  • [24] Y. Zhijian, S. Changming, Blowup of solutions for a class of quasilinear evolution, equations, Nonlinear Analysis: Theory, Methods and Applications 28 (1997) 12, 2017-2032.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aac8c06c-f80e-42b2-b0c0-6d622a930f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.