ON NONEXISTENCE OF GLOBAL IN TIME SOLUTION FOR A MIXED PROBLEM FOR A NONLINEAR EVOLUTION EQUATION WITH MEMORY GENERALIZING THE VOIGT-KELVIN RHEOLOGICAL MODEL

Petro Pukach, Volodymyr Il'kiv, Zinovii Nytrebych, and Myroslava Vovk

Communicated by Vicentiu D. Radulescu

Abstract. The paper deals with investigating of the first mixed problem for a fifth-order nonlinear evolutional equation which generalizes well known equation of the vibrations theory. We obtain sufficient conditions of nonexistence of a global solution in time variable.

Keywords: boundary value problem, beam vibrations, nonlinear evolution equation, Voigt-Kelvin model, memory, blowup.

Mathematics Subject Classification: 35G20, 35G31.

1. INTRODUCTION

We study the nonlinear evolution fifth-order equation with second-order temporal derivative which is a multidimensional nonlinear generalization of the well known one-dimensional linear equation of beam vibrations in the Timoshenko model [7]. Equations of such a type describe propagation of perturbations in a viscoelastic material under action of external ultrasonic aerodynamical forces [8]. Investigation of mixed problems for these equations and systems can be explained by the worn-out contact surfaces [7]. In paper [7] there is investigated the existence of weak solutions

for the mixed problems in the bounded domain D for a system of two linear evolution equations with partial one- and second-order temporal derivatives, where one of unknown functions describes a vertical displacement of a beam.

General mathematical models of contact dynamics for the elastic structures, described by such equations and systems, have been studied recently in many papers [2,13,22]. In paper [22] there was formulated a mathematical problem for dynamical viscoelastic friction with worn-out. Dynamical contact between the beam and movable surface was investigated in [2], thermoelastic contact was analyzed in [13].

A general equation that has finite speed of propagation compatible with Einstein's theory of special relativity is investigated in the paper [5]. Both stationary and evolutionary problems are considered.

Boundary value problems for the differential equations of such a type with odd order partial derivatives were also a topic of modern research [1,3,4,6,9,11,14,17-19,24]. The mixed problem for a strongly nonlinear equation of beam vibrations in a bounded domain was in detail studied in [17]. The case of a weakly nonlinear equation in an unbounded space domain was, in particular, considered in [18,19]. The question of existence of the unique generalized solution to the mixed problem for a strongly nonlinear beam vibrations type equation in the domain $\Omega \times [0,+\infty)$ (Ω is a bounded domain) and a behavior of this solution as $t \to \infty$ were analyzed in [4]. The mixed problem for the nonlinear third-order equation was also investigated in the same domain in [6]. The existence of a unique classical solution, stable under perturbations of the initial data, was there proved, as well as the behavior of this solution as $t \to \infty$ was described. The conditions for existence of local and global solutions to the mixed problem in Sobolev spaces were formulated in [1]. The case, where the degree of nonlinearity in the main part is a function of space variables was studied in [3].

The phenomena of nonexistence of solutions global in time (also known as blowup) was considered in [14,24], in particular, for the hyperbolic fourth-order equation it was studied in [11]. In [9] the sufficient conditions for existence of local and nonexistence of global in time solutions to a mixed problem for a hyperbolic third-order equation with the integral term were discussed. This integral term simulates the well-known phenomena of "memory" in oscillation processes. The description of mathematical model of propagating longitudinal waves in the inhomogenous rod one can consult [23]. The mixed problem for some nonlinear fifth-order equation similar to the previous view without integral term was proposed in [21].

Important questions of existence and stability as $t \to +\infty$ of solutions to nonlinear Hamilton-Jacobi equation in suitable functional spaces were studied in [15, 16], where there were devised effective tools for investigating nonlinear evolution problems based on the fixed point approach stemming from [10]. A related general method for studying the solution existence, based on the Leray-Schauder fixed point approach within the Calogero type projection-algebraic scheme of discrete approximations, was suggested for linear and nonlinear differential-operator equations in Banach spaces in [12].

The main aim of our paper is to establish sufficient conditions for the nonexistence of global solution to a mixed problem for some fifth-order partial differential equation with a fourth order spatial derivative. As a main tool, the method of estimating the energy functional for the mechanical oscillation system will be used.

2. PROBLEM STATEMENT. EXISTENCE OF LOCAL SOLUTION

Let T > 0 be an arbitrary number, $\Omega \subset R^n$ $(n \ge 1)$ be a bounded domain with the smooth bound $\partial\Omega$ of class C^1 . Denote $Q_{\tau} = \Omega \times (0, \tau)$, $S_{\tau} = \partial\Omega \times (0, \tau)$, $\Omega_{\tau} = \{(x, t) : x \in \Omega, t = \tau\}$, $\tau \in [0, T]$.

We will consider the following nonlinear evolution fifth-order equation in the domain Q_T :

$$u_{tt} + \sum_{|\alpha|=|\beta|=2} D^{\beta} \left(a_{\alpha\beta}(x) D^{\alpha} u_{t} \right) + \sum_{|\alpha|=|\beta|=2} D^{\beta} \left(b_{\alpha\beta}(x) D^{\alpha} u \right)$$

$$+ \sum_{|\alpha|=2} D^{\alpha} \left(b_{\alpha}(x) |D^{\alpha} u|^{q-2} D^{\alpha} u \right)$$

$$- \int_{\alpha}^{t} g(t-\theta) \sum_{|\alpha|=2} D^{\alpha} \left(d_{\alpha}(x) D^{\alpha} u(x,\theta) \right) d\theta = c(x) |u|^{p-2} u,$$

$$(2.1)$$

where $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $\alpha_i \in N \cup \{0\}$, $i = 1, \dots, n$, $|\alpha| = \alpha_1 + \dots + \alpha_n$, with initial conditions

$$u|_{t=0} = u_0(x), (2.2)$$

$$u_t|_{t=0} = u_1(x) (2.3)$$

and boundary conditions

$$u|_{S} = 0, \quad \left. \frac{\partial u}{\partial \nu} \right|_{S} = 0,$$
 (2.4)

 ν is the external normal unit vector of the surface $\partial\Omega$.

Problem (2.1)–(2.4) is multidimensional generalization of rheological nonlinear Voigt-Kelvin model. An influence of the internal friction as a result of waves dispersion on the accidental inhomogeneous material is investigated in this model [23].

Assume the next conditions are satisfied.

(A)
$$a_{\alpha\beta} \in L^{\infty}(\Omega), |\alpha| = |\beta| = 2,$$

$$\sum_{|\alpha|=|\beta|=2} a_{\alpha\beta}(x)\xi_{\alpha}\xi_{\beta} \ge A_2 \sum_{|\alpha|=2} |\xi_{\alpha}|^2, \quad A_2 > 0,$$

for arbitary real numbers ξ_{α} , $|\alpha| = 2$, and almost all $x \in \Omega$.

(B) $b_{\alpha\beta} \in L^{\infty}(\Omega), |\alpha| = |\beta| = 2,$

$$\sum_{|\alpha|=|\beta|=2} b_{\alpha\beta}(x)\xi_{\alpha}\xi_{\beta} \ge B_2 \sum_{|\alpha|=2} |\xi_{\alpha}|^2, \quad B_2 > 0,$$

for arbitrary real numbers ξ_{α} , $|\alpha| = 2$, and for almost all $x \in \Omega$; $b_{\alpha\beta}(x) = b_{\beta\alpha}(x)$ for almost all $x \in \Omega$.

- (B1) $b_{\alpha} \in L^{\infty}(\Omega)$, $b_{\alpha}(x) \geq b_2 > 0$ for almost all $x \in \Omega$ and for all α , $|\alpha| = 2$.
- (C) $c \in L^{\infty}(\Omega)$, $c(x) \ge c_0 > 0$ for almost all $x \in \Omega$.
- (D) $d_{\alpha} \in L^{\infty}(\Omega), d_{\alpha}(x) \geq d_{2} \geq 0$ for almost all $x \in \Omega$ and for all α , $|\alpha| = 2$, $d_{3} = \operatorname{ess\,sup} \sum_{|\alpha|=2} d_{\alpha}^{2}(x)$. (G) $g(t) \geq 0, \ g'(t) \leq 0$ for all $t \in [0, +\infty)$,

$$G(t) := \int_{0}^{t} g(\tau) d\tau \ge 0, \quad G(+\infty) = G < \frac{2p-4}{2p-3}B_2, \quad l(t) := B_2 - G(t)d_3 > 0,$$

$$l(+\infty) = B_2 - Gd_3 \equiv l > 0.$$

 $\begin{array}{ll} \text{(PQ)} \;\; p > q > 2. \\ \text{(U)} \;\; u_0, u_1 \in W_0^{2,q}(\Omega). \end{array}$

Definition 2.1. Function $u: \Omega \times [0,T) \to \mathbb{R}$ (T is a positive number or $+\infty$) such that

$$u \in C([0, T_0]; W_0^{2,q}(\Omega)) \cap L^p((0, T_0); L^p(\Omega)), \quad u_t \in C([0, T_0]; W_0^{2,q}(\Omega)),$$

 $u_{tt} \in L^{\infty}((0, T_0); L^2(\Omega))$

for arbitrary number T_0 from (0,T) denote generalized solution of the problem (2.1)–(2.4) in the domain Q_T , if it satisfies the initial conditions (2.2), (2.3) and an integral identity

$$\int_{\Omega_{t}} \left[u_{tt}v + \sum_{|\alpha|=|\beta|=2} a_{\alpha\beta}(x)D^{\alpha}u_{t}D^{\beta}v + \sum_{|\alpha|=|\beta|=2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}v + \sum_{|\alpha|=2} b_{\alpha}(x)|D^{\alpha}u|^{q-2}D^{\alpha}uD^{\alpha}v - \int_{0}^{t} g(t-\theta) \sum_{|\alpha|=2} d_{\alpha}(x)D^{\alpha}u(x,\theta)D^{\alpha}v \, d\theta - c_{0}(x)|u|^{p-2}uv \right] dx = 0$$
(2.5)

for almost all $t \in (0,T)$ and for all $v \in W_0^{2,q}(\Omega) \cap L^p(\Omega)$. In case $T = +\infty$, solution is called global.

Remark 2.2. If $T < +\infty$, then solution is called local. Under some conditions on the coefficients, right part of equation and initial data it is possible to find a finite time moment T (depending on the coefficients, right part of equation and initial data), such that the local solution u of the problem (2.1)–(2.4) exists in the domain Q_T . Sufficient conditions of local in time solution existence of the previous problem are proved via Faedo-Galerkin method [10] in [20] (see Theorem 1 therein).

3. THE MAIN RESULT. SUFFICIENT CONDITIONS OF BLOWUP

Further we will use the following notation:

$$||v||_r := ||v||_{L^r(\Omega)} = \left(\int\limits_{\Omega} |v|^r \, dx\right)^{1/r}, \ r > 1; \ ||D^2 v||_2 := \left(\int\limits_{\Omega} \sum_{|\alpha|=2} |D^\alpha v|^2 \, dx\right)^{1/2}.$$

Taking into account $p \leq \frac{2n}{n-4}$, n > 4, via Sobolev imbedding theorem the next is true $H^2(\Omega) \subset L^p(\Omega)$, i.e.

$$||u||_p \le B||D^2u||_2, \quad B > 0.$$

Denote

$$B_1 = Bl^{-1/2}, \ C = \operatorname{ess\,sup}_{\Omega} c(x), \ A = \operatorname{ess\,sup}_{\Omega} \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}^2(x).$$

Let us consider the functional (energy functional) of the form

$$E(t) = \frac{1}{2} \int_{\Omega_{t}} \left[u_{t}^{2} + \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u \right] dx$$

$$+ \frac{1}{q} \int_{\Omega_{t}} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u|^{q} dx - \frac{1}{p} \int_{\Omega_{t}} c(x) |u|^{p} dx$$

$$+ \frac{1}{2} \int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^{2} dx d\theta$$

$$- \frac{1}{2} G(t) \int_{\Omega_{t}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, t)|^{2} dx, \quad t \in [0, T).$$
(3.1)

Let us denote

$$E_0 := \frac{1}{2} \int_{\Omega} \left[u_1^2 + \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u_0 D^{\beta} u_0 \right] dx$$

$$+ \frac{1}{q} \int_{\Omega} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u_0|^q dx - \frac{1}{p} \int_{\Omega} c(x) |u_0|^p dx,$$

$$E_1 := \frac{p - 2}{2p} C^{-\frac{2}{p - 2}} B_1^{-\frac{2p}{p - 2}}.$$

Theorem 3.1. Suppose that the conditions indicated above are satisfied and, furthermore, $p \leq \frac{2n}{n-4}$ if n > 4; $2 < q < \frac{p+2}{2}$; $E_0 < E_1$, $||D^2u_0||_2 > \sqrt{\frac{E_1}{B_2} \cdot \frac{2p}{p-2}}$. Then a global solution of problem (2.1)–(2.4) does not exist.

4. THE MAIN RESULT PROOF

Assume the contrary, i.e., assume that global solutions of problem (2.1)–(2.4) exist. It follows from the definition of generalized solution that the function E(t), $t \in [0, +\infty)$, is continuous and its restriction to an arbitrary segment $[0, \tau)$, $\tau > 0$, is an absolutely continuous function. Moreover, it is obvious that $E(0) = E_0$. Let function u is the global solution of the problem (2.1)–(2.4). Then it satisfies (2.5). Considering $v = u_t$ in (2.5), one can obtain identity

$$\frac{d}{dt} \left[\frac{1}{2} \int_{\Omega_t} \left[u_t^2 + \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u \right] dx + \frac{1}{q} \int_{\Omega_t} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u|^q dx \right]
- \frac{d}{dt} \left[\frac{1}{p} \int_{\Omega_t} c(x) |u|^p dx \right] + \int_{\Omega_t} \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x) D^{\alpha} u_t D^{\beta} u_t dx
- \int_{0}^{t} g(t - \theta) \int_{\Omega_t} \sum_{|\alpha| = 2} d_{\alpha}(x) D^{\alpha} u(x, \theta) D^{\alpha} u_t(x, t) dx d\theta = 0$$
(4.1)

for almost all $t \in [0, +\infty)$. We will transform integral

$$\begin{split} &\int\limits_0^t g(t-\theta) \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) D^\alpha u(x,\theta) D^\alpha u_t(x,t) \, dx \, d\theta \\ &= \int\limits_0^t g(t-\theta) \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) D^\alpha u_t(x,t) [D^\alpha u(x,\theta) - D^\alpha u(x,t)] \, dx \, d\theta \\ &+ \int\limits_0^t g(t-\theta) \, dt \int\limits_{\Omega_t} \sum_{|\alpha|=2} d_\alpha(x) D^\alpha u(x,t) D^\alpha u_t(x,t) \, dx \\ &= -\frac{1}{2} \int\limits_0^t g(t-\theta) \frac{d}{dt} \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) |D^\alpha u(x,\theta) - D^\alpha u(x,t)|^2 \, dx \, d\theta \\ &+ \frac{1}{2} \int\limits_0^t g(\theta) \, d\theta \frac{d}{dt} \int\limits_{\Omega_t} \sum_{|\alpha|=2} d_\alpha(x) |D^\alpha u(x,t)|^2 \, dx \\ &= -\frac{1}{2} \frac{d}{dt} \left[\int\limits_0^t g(t-\theta) \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) |D^\alpha u(x,\theta) - D^\alpha u(x,t)|^2 \, dx \, d\theta \right] \\ &+ \frac{1}{2} \int\limits_0^t g'(t-\theta) \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) |D^\alpha u(x,\theta) - D^\alpha u(x,t)|^2 \, dx \, d\theta \\ &+ \frac{1}{2} \frac{d}{dt} \left[\int\limits_0^t g(\theta) \, d\theta \int\limits_{\Omega_\theta} \sum_{|\alpha|=2} d_\alpha(x) |D^\alpha u(x,t)|^2 \, dx \right] - \frac{1}{2} g(t) \int\limits_{\Omega_\theta} \sum_{i,j=1}^n d_\alpha(x) |D^\alpha u(x,t)|^2 \, dx. \end{split}$$

Based on the last equality it follows from (4.1) that

$$\begin{split} &\frac{d}{dt} \left[\frac{1}{2} \int_{\Omega_{t}} \left[u_{t}^{2} + \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u \right] dx + \frac{1}{q} \int_{\Omega_{t}} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u|^{q} dx \right] \\ &- \frac{d}{dt} \left[\frac{1}{p} \int_{\Omega_{t}} c(x) |u|^{p} dx \right] \\ &= - \int_{\Omega_{t}} \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x) D^{\alpha} u_{t} D^{\beta} u_{t} dx \\ &- \frac{1}{2} \frac{d}{dt} \left[\int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^{2} dx d\theta \right] \\ &+ \frac{1}{2} \int_{0}^{t} g'(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^{2} dx d\theta \\ &+ \frac{1}{2} \frac{d}{dt} \left[\int_{0}^{t} g(\theta) d\theta \int_{\Omega_{t}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, t)|^{2} dx \right] \\ &- \frac{g(t)}{2} \int_{\Omega_{t}} \sum_{|\alpha| = \beta} d_{\alpha}(x) |D^{\alpha} u(x, t)|^{2} dx \\ &\leq - \int_{\Omega_{t}} \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x) D^{\alpha} u_{t} D^{\beta} u_{t} dx \\ &- \frac{1}{2} \frac{d}{dt} \left[\int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, t)|^{2} dx \right] \\ &+ \frac{1}{2} \frac{d}{dt} \left[\int_{0}^{t} g(\theta) d\theta \int_{\Omega_{t}} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, t)|^{2} dx \right]. \end{split}$$

One can obtain

$$E'(t) = \frac{d}{dt} \left[\frac{1}{2} \int_{\Omega_t} \left[u_t^2 + \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u \right] dx + \frac{1}{q} \int_{\Omega_t} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u|^q dx \right]$$

$$- \frac{1}{p} \int_{\Omega_t} c(x) |u|^p dx$$

$$+ \frac{1}{2} \frac{d}{dt} \left[\int_0^t g(t - \theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^2 dx d\theta \right]$$

$$- \int_0^t g(\theta) d\theta \int_{\Omega_t} \sum_{|\alpha| = 2} d_{\alpha}(x) |D^{\alpha} u(x, t)|^2 dx$$

$$\leq - \int_{\Omega_t} \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x) D^{\alpha} u_t D^{\beta} u_t dx < 0$$

for almost all $t \in [0, +\infty)$. From (3.1) it follows the conclusion

$$\begin{split} E(t) &\geq \frac{1}{2}l(t)\|D^{2}u\|_{2}^{2} + \frac{1}{2}\|u_{t}\|_{2}^{2} + \frac{1}{q}\int_{\Omega_{t}}\sum_{|\alpha|=2}b_{\alpha}(x)|D^{\alpha}u|^{q}\,dx \\ &- \frac{1}{p}\int_{\Omega_{t}}c(x)|u|^{p}\,dx + \frac{1}{2}\int_{0}^{t}g(t-\theta)\int_{\Omega_{\theta}}\sum_{|\alpha|=2}d_{\alpha}(x)|D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2}\,dx\,d\theta \\ &\geq \frac{1}{2}l(t)\|D^{2}u\|_{2}^{2} + \frac{1}{2}\|u_{t}\|_{2}^{2} + \frac{1}{q}\int_{\Omega_{t}}\sum_{|\alpha|=2}b_{\alpha}(x)|D^{\alpha}u|^{q}\,dx \\ &+ \frac{1}{2}\int_{0}^{t}g(t-\theta)\int_{\Omega_{\theta}}\sum_{|\alpha|=2}d_{\alpha}(x)|D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2}\,dx\,d\theta - \frac{C}{p}B_{1}^{p}l^{\frac{p}{2}}\|D^{2}u\|_{2}^{p} \\ &\geq \frac{1}{2}l(t)\|D^{2}u\|_{2}^{2} + \frac{1}{2}\|u_{t}\|_{2}^{2} + \frac{1}{q}\int_{\Omega_{t}}\sum_{|\alpha|=2}b_{\alpha}(x)|D^{\alpha}u|^{q}\,dx \\ &+ \frac{1}{2}\int_{0}^{t}g(t-\theta)\int_{\Omega_{\theta}}\sum_{|\alpha|=2}d_{\alpha}(x)|D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2}\,dx\,d\theta \\ &- \frac{CB_{1}^{p}}{p}\left[l(t)\|D^{2}u\|_{2}^{2} + \frac{2}{q}\int_{\Omega_{t}}\sum_{|\alpha|=2}b_{\alpha}(x)|D^{\alpha}u|^{q}\,dx \\ &+ \|u_{t}\|_{2}^{2} + \int_{0}^{t}g(t-\theta)\int_{\Omega_{\theta}}\sum_{|\alpha|=2}d_{\alpha}(x)|D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2}\,dx\,d\theta \right]^{\frac{p}{2}}. \end{split}$$

Therefore,

$$E(t) \ge h(\xi(t)),$$

where $h(y) = \frac{1}{2}y^{2} - \frac{CB_{1}^{p}}{p}y^{p}$ and

$$\xi(t) = \left[l(t) \|D^2 u\|_2^2 + \|u_t\|_2^2 + \frac{2}{q} \int_{\Omega_t} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha} u|^q dx + \int_0^t g(t-\theta) \int_{\Omega_t} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha} u(x,\theta) - D^{\alpha} u(x,t)|^2 dx d\theta \right]^{\frac{1}{2}}.$$

Obviously, $y_0 = C^{-\frac{1}{p-2}} B_1^{-\frac{p}{p-2}}$ is the maximum of the function h, because of $h'(y) = y - C B_1^p y^{p-1}$. Accordingly,

$$h(y_0) = \left(\frac{1}{2} - \frac{1}{p}\right)C^{-\frac{2}{p-2}}B_1^{-\frac{2p}{p-2}} = E_1 > E_0.$$

So there exists such $\beta > y_0$, that $h(\beta) = E_0$.

If

$$\beta_0 = \left[\int_{\Omega} \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u_0 D^{\beta} u_0 dx \right]^{\frac{1}{2}},$$

then

$$h(\beta_0) \leq \frac{1}{2} \int_{\Omega} \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u_0 D^{\beta} u_0 \, dx - \frac{CB_1^p B_2^{\frac{p}{2}}}{p} \left[\left(\int_{\Omega} \sum_{|\alpha| = 2} |D^{\alpha} u_0|^2 \, dx \right)^{\frac{1}{2}} \right]^p$$

$$\leq \frac{1}{2} \int_{\Omega} \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u_0 D^{\beta} u_0 \, dx - \frac{CB_1^p B_2^{\frac{p}{2}}}{pB^p} \|u_0\|_p^p$$

$$\leq \frac{1}{2} \int_{\Omega} \left[\sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u_0 D^{\beta} u_0 + |u_1|^2 \right] dx + \frac{1}{q} \int_{\Omega} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u_0|^q \, dx$$

$$- \frac{1}{p} \int_{\Omega_t} c(x) |u_0|^p \, dx + \frac{1}{p} \int_{\Omega_t} c(x) |u_0|^p \, dx - \frac{CB_1^p B_2^{\frac{p}{2}}}{pB^p} \|u_0\|_p^p.$$

Since $B_2 > l$, then $h(\beta_0) \le E_0 = h(\beta)$. Obviously, $\beta_0 \ge \sqrt{B_2} ||D^2 u_0||_2$. According to the theorem

$$||D^2u_0||_2 > \sqrt{\frac{E_1}{B_2} \cdot \frac{2p}{p-2}},$$

consequently

$$\beta_0 > \sqrt{E_1 \cdot \frac{2p}{p-2}} \ge \sqrt{C^{-\frac{2}{p-2}} B_1^{-\frac{2p}{p-2}}} = y_0.$$

As function h(y) is monotonically decreasing while $\beta > y_0$, taking into account the last estimations $h(\beta_0) \le h(\beta)$, $\beta_0 > y_0$, one can get $\beta_0 > \beta > y_0$.

Further we will assume existence of $t_0 \in [0, +\infty)$, such that $\xi(t_0) < \beta$. Since ξ is continuous function, t_0 can be choosed as following $\xi(t_0) > y_0$, then $y_0 < \beta < \beta_0$. Hence, $E(t_0) \ge h(y_0) > h(\xi(t_0)) > h(\beta) = E_0$. That is impossible, because $E(t) \le E_0$ for all $t \in [0, T)$ by the reason of strongly monotonically decreasing function E(t).

So it is proved, that in case

$$E_0 < E_1, \quad ||D^2 u_0||_2 > \sqrt{\frac{E_1}{B_2} \cdot \frac{2p}{p-2}}$$

exists $\beta \geq y_0$, such that

$$\xi(t) = \left[l(t) \|D^{2}u\|_{2}^{2} + \|u_{t}\|_{2}^{2} + \frac{2}{q} \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha}u|^{q} dx \right]$$

$$+ \int_{0}^{t} g(t-\theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2} dx d\theta \right]^{\frac{1}{2}} \ge \beta, \quad t \in [0, +\infty).$$

$$(4.3)$$

Moreover, since $E(t) < E_0$ on $(0, +\infty)$, based on (4.2) we obtain

$$\frac{1}{2}l(t)\|D^{2}u\|_{2}^{2} + \frac{1}{2}\|u_{t}\|_{2}^{2} + \frac{1}{q}\int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x)|D^{\alpha}u|^{q} dx
+ \frac{1}{2}\int_{0}^{t} g(t-\theta)\int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x)|D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2} dx d\theta < E_{0} + \frac{C}{p}\int_{\Omega_{t}} |u|^{p} dx.$$
(4.4)

From (4.3) and (4.4) it follows that

$$\frac{C}{n} \|u\|_p^p \ge \frac{1}{2}\beta^2 - E_0 \ge \frac{1}{2}\beta^2 - h(\beta) = \frac{B_1^p C}{n}\beta^p \quad \text{or} \quad \|u\|_p \ge B_1\beta.$$

If $\|u\|_p \le 1$, then $\|u\|_p^s \le \|u\|_p^2 \le B\|D^2u\|_2^2$ as $2 \le s \le p$. If $\|u\|_p > 1$, then $\|u\|_p^s \le \|u\|_p^p$ as $2 \le s \le p$. So there is an obvious estimation

$$||u||_p^s \le \kappa_1(||D^2u||_2^2 + ||u||_p^p), \quad \kappa_1 = \max\{B, 1\}, \quad s \in [2, p].$$
 (4.5)

Let $H(t) = E_1 - E(t)$. Using (4.2) one can get

$$\frac{1}{2} \left(B_2 - l \right) \|D^2 u\|_2^2 \le \frac{1}{2} l(t) \|D^2 u\|_2^2
\le E(t) - \frac{1}{2} \|u_t\|_2^2 - \frac{1}{q} \int_{\Omega_t} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha} u|^q dx
- \frac{1}{2} \int_0^t g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^2 dx d\theta
+ \frac{1}{p} \int_{\Omega_t} c(x) |u|^p dx.$$
(4.6)

Additionally

$$||u||_{p}^{p} \ge B_{1}^{p}\beta^{p} > B_{1}^{p}y_{0}^{p} = B_{1}^{p}B_{1}^{-\frac{p^{2}}{p-2}}C^{-\frac{p}{p-2}}$$

$$= B_{1}^{-\frac{2p}{p-2}}C^{-\frac{p}{p-2}} = B_{1}^{-\frac{2p}{p-2}}C^{-\frac{2}{p-2}}C^{-1} = \frac{2p}{(p-2)C}E_{1},$$

therefore $E_1 \leq \frac{(p-2)C}{2p} \|u\|_p^p$ and taking into consideration (4.6),

$$\frac{1}{2} \left(B_{2} - l \right) \|D^{2}u\|_{2}^{2} \leq -E_{1} + E_{1} + E(t) - \frac{1}{2} \|u_{t}\|_{2}^{2} - \frac{1}{q} \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha}u|^{q} dx
- \frac{1}{2} \int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha}u(x, \theta) - D^{\alpha}u(x, t)|^{2} dx d\theta
+ \frac{1}{p} \int_{\Omega_{t}} c(x) |u|^{p} dx
\leq -H(t) - \frac{1}{2} \|u_{t}\|_{2}^{2} - \frac{1}{q} \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha}u|^{q} dx - \frac{1}{2} \int_{0}^{t} g(t - \theta)
\times \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha}u(x, \theta) - D^{\alpha}u(x, t)|^{2} dx d\theta + \left(\frac{1}{p} + \frac{p-2}{2p}\right) C \|u\|_{p}^{p}
\leq \frac{1}{q} \left[-H(t) - \|u_{t}\|_{2}^{2} - \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha}u|^{q} dx
- \int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha}u(x, \theta) - D^{\alpha}u(x, t)|^{2} dx d\theta + \frac{q}{2} \|u\|_{p}^{p} \right].$$

From inequalities (4.5) and (4.7) it follows that

$$||u||_{p}^{s} \leq \kappa_{2} \left[-H(t) - ||u_{t}||_{2}^{2} - \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha}u|^{q} dx \right]$$
$$- \int_{0}^{t} g(t-\theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^{2} dx d\theta$$
$$+ \frac{q}{2} ||u||_{p}^{p} , \quad \kappa_{2} > 0, s \in [2, p].$$

Since H'(t) > 0 almost everywhere on $[0, +\infty)$, then $H(t) \ge H(0) = E_1 - E_0 > 0$. From (4.4) additionally obtain the following

$$\begin{split} H(t) &\leq E_1 - \frac{1}{2} \left[l(t) \|D^2 u\|_2^2 + \frac{1}{2} \|u_t\|_2^2 + \frac{1}{q} \int_{\Omega_t} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha} u|^q \, dx \\ &+ \frac{1}{2} \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha|=2} d_{\alpha}(x) |D^{\alpha} u(x,\theta) - D^{\alpha} u(x,t)|^2 \, dx \, d\theta \right] + \frac{C}{p} \|u\|_p^p \\ &\leq E_1 - \frac{1}{2} \beta^2 + \frac{C}{p} \|u\|_p^p \\ &\leq E_1 - \frac{1}{2} \xi_0^2 + \frac{C}{p} \|u\|_p^p \\ &\leq \frac{p-2}{2p} \xi_0^2 - \frac{1}{2} \xi_0^2 + \frac{C}{p} \|u\|_p^p \\ &\leq \frac{C}{p} \|u\|_p^p. \end{split}$$

Accordingly,

$$0 < H(0) \le H(t) \le \frac{C}{p} ||u||_p^p, \quad t \in [0, T).$$
(4.8)

Hereafter, let

$$L(t) := H^{1-\alpha}(t) + \varepsilon \int_{\Omega_t} u u_t \, dx,$$

where $\varepsilon > 0$ and $\alpha \in (0,1)$ are arbitrary numbers. Then

$$\begin{split} L'(t) &= (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \int_{\Omega_t} [u_t^2 + uu_{tt}] \, dx = (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \int_{\Omega_t} u_t^2 \, dx \\ &+ \varepsilon \int_{\Omega_t} \left[c(x)|u|^p - \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x)D^{\alpha}u_tD^{\beta}u - \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}u \right] dx \\ &- \varepsilon \int_{\Omega_t} \left[\sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx \\ &+ \varepsilon \int_{0}^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} d_{\alpha}(x)D^{\alpha}u(x,\theta)D^{\alpha}u(x,t) \, dx \, d\theta \\ &= (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \int_{\Omega_t} u_t^2 \, dx + \varepsilon \int_{\Omega_t} \left[c(x)|u|^p \right. \\ &- \sum_{|\alpha| = |\beta| = 2} a_{\alpha\beta}(x)D^{\alpha}u_tD^{\beta}u - \sum_{|\alpha| = |\beta| = 2} b_{\alpha}(x)D^{\alpha}uD^{\beta}u - \sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx \\ &+ \varepsilon \int_{0}^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} d_{\alpha}(x) \left[D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t) \right] D^{\alpha}u(x,t) \, dx \, d\theta \\ &+ \varepsilon \int_{0}^t g(\theta) \, d\theta \int_{\Omega_t} \sum_{|\alpha| = 2} d_{\alpha}(x)|D^{\alpha}u(x,t)|^2 \, dx \geq (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \int_{\Omega_t} u_t^2 \, dx \\ &+ \varepsilon \int_{\Omega_t} c(x)|u|^p \, dx - \frac{\varepsilon \delta_1}{2} \int_{\Omega_t} \sum_{|\alpha| = 2} |D^{\alpha}u|^2 \, dx - \frac{\varepsilon C_1}{2\delta_1} \int_{\Omega_t} \sum_{|\alpha| = 2} |D^{\alpha}u_t|^2 \, dx \\ &- \varepsilon \int_{\Omega_t} \left[\sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}u + \sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx \\ &- \frac{\delta_2 C_2 \varepsilon}{2\delta_2} \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,t)|^2 \, dx + \varepsilon C_3 \int_0^t g(\theta) \, d\theta \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,t)|^2 \, dx, \end{split}$$

where δ_1 , δ_2 are arbitrary positive constants, positive constant C_1 depends on A, positive constant C_2 depends on $\operatorname{ess\,sup}_{\Omega} \sum_{|\alpha|=2} d_{\alpha}^2(x)$, positive constant C_3 depends on d_2 .

Therefore.

$$\begin{split} L'(t) &\geq \left[(1-\alpha)H^{-\alpha}(t)A_2 - \frac{\varepsilon C_1}{2\delta_1} \right] \|D^2 u_t\|_2^2 + \varepsilon \int_{\Omega_t} u_t^2 \, dx + \varepsilon \int_{\Omega_t} c(x)|u|^p \, dx \\ &- \varepsilon \int_{\Omega_t} \left[\sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}u + \sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx \right] \\ &+ \varepsilon \left[\left(1 - \frac{C_2}{2\delta_2} \right) \int_0^t g(\theta) \, d\theta - \frac{\delta_1}{2} \right] \|D^2 u\|_2^2 \\ &- \frac{\varepsilon \delta_2 C_2}{2} \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^2 \, dx \, d\theta \\ &\geq \left[(1-\alpha)H^{-\alpha}(t)A_2 - \frac{\varepsilon C_1}{2\delta_1} \right] \|D^2 u_t\|_2^2 + \varepsilon \int_{\Omega_t} u_t^2 dx + \varepsilon p \left[-H(t) + H(t) + \frac{1}{p} \int_{\Omega_t} c(x)|u|^p dx \right] \\ &- \varepsilon \int_{\Omega_t} \left[\sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}u + \sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx + \varepsilon \left[\left(1 - \frac{C_2}{2\delta_2} \right) \right] \\ &\times \int_0^t g(\theta) \, d\theta - \frac{\delta_1}{2} \left[\|D^2 u\|_2^2 - \frac{\varepsilon \delta_2 C_2}{2} \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^2 \, dx \, d\theta \\ &\geq \left[(1-\alpha)H^{-\alpha}(t)A_2 - \frac{\varepsilon C_1}{2\delta_1} \right] \|D^2 u_t\|_2^2 + \varepsilon \|u_t\|^2 + \varepsilon p \left[-H(t) \right] \\ &+ \frac{\delta_2}{2} \int_{\Omega_t} \left[|u_t|^2 + \sum_{|\alpha| = |\beta| = 2} |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^2 \, dx \, d\theta \\ &\geq \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^2 \, dx \, d\theta \\ &- \frac{\delta_3 \varepsilon p}{2} \int_0^t g(\theta) \, d\theta \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u|^2 \, dx \\ &+ \varepsilon (1-\delta_3) \int_{\Omega_t} c(x)|u|^p \, dx - \varepsilon \int_{\Omega_t} \left[\sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}u + \sum_{|\alpha| = 2} b_{\alpha}(x)|D^{\alpha}u|^q \right] dx \\ &+ \varepsilon \left[\left(1 - \frac{C_2}{2\delta_2} \right) \int_0^t g(\theta) \, d\theta - \frac{\delta_1}{2} \right] \|D^2 u\|_2^2 - \frac{\varepsilon \delta_2 C_2}{2} \int_0^t g(t-\theta) \\ &\times \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha}u(x,\theta) - D^{\alpha}u(x,t)|^2 \, dx \, d\theta = \left[(1-\alpha)H^{-\alpha}(t)A_2 - \frac{\varepsilon C_1}{2\delta_1} \right] \\ &\times \|D^2 u_t\|_2^2 + \varepsilon \left(1 + \frac{\delta_3 p}{2} \right) \|u_t\|^2 \, dx - \varepsilon pH(t) + \varepsilon \left(\frac{\delta_3 p}{2} - 1 \right) \end{aligned}$$

$$\times \int_{\Omega_{t}} \sum_{|\alpha|=|\beta|=2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u \, dx + \varepsilon \left(\frac{\delta_{3}p}{q} - 1\right) \int_{\Omega_{t}} \sum_{|\alpha|=2} b_{\alpha}(x) |D^{\alpha} u|^{q} \, dx + \varepsilon (1 - \delta_{3})$$

$$\times \int_{0}^{t} c(x) |u|^{p} \, dx + \varepsilon \left(\frac{\delta_{3}p}{2} - \frac{\delta_{2}}{2}\right) \int_{0}^{t} g(t - \theta) \int_{\Omega_{\theta}} \sum_{|\alpha|=2} |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^{2} \, dx \, d\theta$$

$$- \varepsilon \left(\left(\frac{\delta_{3}p}{2} - 1 + \frac{C_{2}}{2\delta_{2}}\right) \int_{0}^{t} g(\theta) \, d\theta + \frac{\delta_{1}}{2}\right) ||D^{2}u||_{2}^{2}, \tag{4.9}$$

and $0 < \delta_3 < 1$. Choosing $\delta_1 = H^{\alpha}(t)\delta_4$ in (4.9) one can get

$$L'(t) \geq \left[(1-\alpha)A_2 - \frac{\varepsilon C_1}{2\delta_4} \right] H^{-\alpha}(t) \|D^2 u_t\|_2^2 + \varepsilon \left(1 + \frac{\delta_3 p}{2} \right) \|u_t\|^2 dx - \varepsilon p H(t) + \varepsilon$$

$$\times \left(\frac{\delta_3 p}{2} - 1 \right) \int_{\Omega_t} \sum_{|\alpha| = |\beta| = 2} b_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u dx$$

$$+ \varepsilon \left(\frac{\delta_3 p}{q} - 1 \right) \int_{\Omega_t} \sum_{|\alpha| = 2} b_{\alpha}(x) |D^{\alpha} u|^q dx$$

$$+ \varepsilon (1 - \delta_3) \int_0^t c(x) |u|^p dx + \varepsilon \left(\frac{\delta_3 p}{2} - \frac{\delta_2}{2} \right) \int_0^t g(t - \theta)$$

$$\times \int_{\Omega_\theta} \sum_{|\alpha| = 2} |D^{\alpha} u(x, \theta) - D^{\alpha} u(x, t)|^2 dx d\theta$$

$$- \varepsilon \left(\frac{\delta_3 p}{2} - 1 + \frac{C_2}{2\delta_2} \right) \int_0^t g(\theta) d\theta \|D^2 u\|_2^2 - \frac{\varepsilon \delta_4}{2} H^{\alpha}(t) \|D^2 u\|_2^2.$$

$$(4.10)$$

Let us set $\alpha = \frac{q-2}{p}$. By (4.8) and the spaces embeddings $L^{2+p\alpha}(\Omega) \subset L^2(\Omega)$, we get

$$H^{\alpha}(t)\|D^{2}u\|_{2}^{2} \leq \left(\frac{C}{p}\right)^{\alpha}\|u\|_{p}^{p\alpha}\|D^{2}u\|_{2}^{2} \leq \left(\frac{C}{p}\right)^{\alpha}B^{p\alpha}\|D^{2}u\|_{2}^{p\alpha}\|D^{2}u\|_{2}^{2}$$

$$\leq \left(\frac{CB^{p}}{p}\right)^{\alpha}\|D^{2}u\|_{2}^{p\alpha+2} \leq \left(\frac{CB^{p}}{p}\right)^{\alpha}C_{3}\|D^{2}u\|_{q}^{p\alpha+2} = C_{4}\|D^{2}u\|_{q}^{q},$$

$$C_{4} = \left(\frac{C}{p}\right)^{\alpha}B^{p\alpha}C_{3}, \quad C_{3} > 0.$$

Inequality (4.10) can be rewritten as follows:

$$L'(t) \geq \left[(1 - \alpha)A_2 - \frac{\varepsilon C_1}{2\delta_4} \right] H^{-\alpha}(t) \|D^2 u_t\|_2^2 + \varepsilon \left(1 + \frac{\delta_3 p}{2} \right) \|u_t\|^2 dx - \varepsilon p H(t)$$

$$+ \varepsilon \left[\left(\frac{\delta_3 p}{2} - 1 \right) B_2 - \left(\frac{\delta_3 p}{q} - 1 + \frac{C_2}{2\delta_2} \right) \left(B_2 - l \right) \right] \|D^2 u\|_2^2$$

$$+ \varepsilon \left[\left(\frac{\delta_3 p}{2} - 1 \right) b_2 - \frac{C_4 \delta_4}{2} \right] \|D^2 u\|_q^q + \varepsilon (1 - \delta_3) c_0 \|u\|_p^p$$

$$+ \varepsilon \left(\frac{\delta_3 p}{2} - \frac{\delta_2}{2} \right) \int_0^t g(t - \theta) \int_{\Omega_2} \sum_{|\alpha| = 2} |D^\alpha u(x, \theta) - D^\alpha u(x, t)|^2 dx d\theta.$$

$$(4.11)$$

Due to the conditions of the theorem we can choose the parameters δ_i , i = 2, 3, 4, so that inequality (4.11) yields

$$L'(t) \ge C_5 \left[-H(t) + \|D^2 u\|_2^2 + \|D^2 u\|_q^q + \|u_t\|_2^2 + \|u\|_p^p + \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha|=2} |D^\alpha u(x,\theta) - D^\alpha u(x,t)|^2 dx d\theta \right], \quad C_5 > 0.$$

$$(4.12)$$

The next point under consideration

$$\begin{bmatrix} L(t) \end{bmatrix}^{\frac{1}{1-\alpha}} = \left[H^{\alpha}(t) + \varepsilon \int_{\Omega_t} u u_t \, dx \right]^{\frac{1}{1-\alpha}} \le C_6 \left[H(t) + \|u_t\|_2^{\frac{1}{1-\alpha}} \|u\|_2^{\frac{1}{1-\alpha}} \right]
\le C_7 \left[H(t) + \|u_t\|_2^2 + \|u\|_2^{\frac{2}{1-2\alpha}} \right], \quad C_6 > 0, \quad C_7 > 0.$$
(4.13)

Since
$$q < \frac{p+2}{2}$$
 and $\alpha = \frac{q-2}{p}$, then $\alpha < \frac{1}{2}$ and $2 \le \frac{2}{1-2\alpha} \le p$. Hence

$$||u||_{2}^{\frac{2}{1-2\alpha}} \le C_8 (||u||_{2}^{2} + ||u||_{p}^{p}), \quad ||u||_{2}^{2} \le C_9 ||D^2 u||_{2}^{2} \le C_9 ||D^2 u||_{2}^{p} \le C_9 ||D^2 u||_{p}^{p}|,$$

 $C_8 > 0, C_9 > 0, C_{10} > 0.$ Thereby from (4.13)

$$L'(t) \leq C_{11} \left[-H(t) + \|D^2 u\|_2^2 + \|D^2 u\|_q^q + \|u_t\|_2^2 + \|u\|_p^p + \int_0^t g(t-\theta) \int_{\Omega_\theta} \sum_{|\alpha|=2} |D^\alpha u(x,\theta) - D^\alpha u(x,t)|^2 dx d\theta \right], \quad C_{11} > 0.$$

$$(4.14)$$

Taking into account (4.12), (4.14),

$$L'(t) \ge C_{12} \left[L(t) \right]^{\frac{1}{1-\alpha}}, \quad C_{12} > 0.$$
 (4.15)

Integrating the both sides of (4.15) by variable τ from 0 to t, obtain the following

$$L(t) \ge \frac{1}{\left[L(0)^{\frac{\alpha}{\alpha-1}} - \frac{C_{12}\alpha}{1-\alpha}t\right]^{\frac{1-\alpha}{\alpha}}}.$$
(4.16)

Since

$$L(0) = H^{1-\alpha}(0) + \varepsilon \int_{\Omega_0} u_0(x)u_1(x) dx,$$

then, in virtue of H(0) > 0, by choosing sufficiently small $\varepsilon > 0$ it is possible to obtain L(0) > 0. Then from (4.16) we deduce the existence of such $T^* > 0$ that

$$\lim_{t \to T^* - 0} L(t) = +\infty.$$

We arrive at a contradiction with the statement that the function L(t) is continuous on $[0, +\infty)$. So u cannot be aglobal solution of the problem (2.1)–(2.4) in the domain Q_T . The theorem is proved.

REFERENCES

- [1] G. Andrews, On the existence of solution to the equation $u_{tt} = u_{xxt} + \sigma(u_x)_x$, J. Differential Equations **35** (1980), 200–231.
- [2] K.T. Andrews, M. Shillor, S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity 42 (1996), 1–30.
- [3] O. Buhrii, G. Domanska, N. Protsakh, *The mixed problem for nonlinear equation of third order in Sobolev generalized spaces*, Visnyk of Lviv University, Series Mathematics and Mechanics **64** (2005), 44–61.
- [4] H.R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron.
 J. Qual. Theory Differ. Equ. 7 (2002), 1–21.
- [5] M.H. Duong, Comparison and maximum principles for a class of flux-limited diffusions with external force fields, Adv. Nonlinear Anal. 2 (2016), 167–176.
- [6] J.M. Greenberg, On the existence, uniqueness and stability of solutions of the equation $\rho_0 u_{tt} = \sigma'(u_x) u_{xx} + \lambda u_{xtx}$, J. Math. Anal. Appl. **25** (1969), 575–591.
- [7] R.J. Gu, K.L. Kuttler, M. Shillor, Frictional wear of a thermoelastic beam, J. Math. Anal. Appl. 242 (2000), 212–236.
- [8] T.J. Hughes, J.E. Marsden, Mathematical Foundation of Elasticity, C. Prentice Hall, Endlewood, 1983.
- [9] S.P. Lavrenyuk, O.T. Panat, Unboundedness of solutions of one hyperbolic third order equation, J. Math. Sci. (N.Y.) 165 (2010) 2, 200–213.
- [10] J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.

- [11] Ya. Liu, R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations 244 (2008), 200–228.
- [12] M. Lustyk, J. Janus, M. Pytel-Kudela, A.K. Prykarpatsky, The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations, Central European J. Math. 7 (2009) 3, 775–786.
- [13] J.A.C. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with normal and friction interface laws, Nonlin. Anal. 11 (1987), 407–428.
- [14] S.A. Messaoudi, Blow-up of positive-initial-energy solutions of nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006), 902–915.
- [15] Ya.V. Mykytiuk, A.K. Prykarpatsky, D.L. Blackmore, *The Lax solution to a Hamilton–Jacobi equation and its generalizatios: Part 2*, Nonlin. Anal. **55** (2003), 629–640.
- [16] N.K. Prykarpatska, D.L. Blackmore, A.K. Prykarpatsky, M. Pytel-Kudela, On the inf-type extremality solutions to Hamilton-Jacobi equations and some generalizatios, Miskolc Mathematical Notes 4 (2003) 2, 153–176.
- [17] P.Ya. Pukach, The mixed problem for strongly nonlinear equation of beam vibrations type in bounded domain, Applied Problems of Mechanics and Mathematics 4 (2006), 59–69.
- [18] P.Ya. Pukach, The mixed problem for some nonlinear equation of beam vibrations type in unbounded domain, Scientific Herald of Y. Fedkovych Chernivtsi National University, Mathematics 314–315 (2006), 159–170.
- [19] P.Ya. Pukach, The mixed problem for nonlinear equation of beam vibrations type in unbounded domain, Matematychni Studii 27 (2007) 2, 139–148.
- [20] P.Ya. Pukach, On the existence of local solutions of the mixed problem for a nonlinear fifth order evolution equation, Journal of Lviv Polytechnic National University "Physical and Mathematical Sciences" 625 (2008), 27–34.
- [21] P.Ya. Pukach, On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time, Nonlinear Oscillations 14 (2012) 3, 369–378.
- [22] N. Strömberg, L. Johansson, A. Klarbring, Derivation and analysis of a generalized standard model for a contact friction and wear, Intern. J. Solids and Structures 13 (1996), 1817–1836.
- [23] V.I. Yerofeev, V.V. Kazhaev, N.P. Semerikova, Waves in the rods. Dispersion. Dissipation. Nonlinearity, Fizmatlit, Moscow, 2002.
- [24] Y. Zhijian, S. Changming, Blowup of solutions for a class of quasilinear evolution equations, Nonlinear Analysis: Theory, Methods and Applications 28 (1997) 12, 2017–2032.

Petro Pukach ppukach@gmail.com

Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine

Volodymyr Il'kiv ilkivv@i.ua

Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine

Zinovii Nytrebych znytrebych@gmail.com

Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine

Myroslava Vovk mira.i.kopych@gmail.com

Lviv Polytechnic National University Department of Mathematics St. Bandery Str. 12, 79013, Lviv, Ukraine

Received: July 22, 2016. Accepted: December 27, 2016.