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1. INTRODUCTION

We study the nonlinear evolution fifth-order equation with second-order temporal
derivative which is a multidimensional nonlinear generalization of the well known
one-dimensional linear equation of beam vibrations in the Timoshenko model [7].
Equations of such a type describe propagation of perturbations in a viscoelastic
material under action of external ultrasonic aerodynamical forces [8]. Investigation of
mixed problems for these equations and systems can be explained by the worn-out
contact surfaces [7]. In paper [7] there is investigated the existence of weak solutions
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for the mixed problems in the bounded domain D for a system of two linear evolution
equations with partial one- and second-order temporal derivatives, where one of
unknown functions describes a vertical displacement of a beam.

General mathematical models of contact dynamics for the elastic structures,
described by such equations and systems, have been studied recently in many papers
[2,13,22]. In paper [22] there was formulated a mathematical problem for dynamical
viscoelastic friction with worn-out. Dynamical contact between the beam and movable
surface was investigated in [2], thermoelastic contact was analyzed in [13].

A general equation that has finite speed of propagation compatible with Einstein’s
theory of special relativity is investigated in the paper [5]. Both stationary and
evolutionary problems are considered.

Boundary value problems for the differential equations of such a type with odd order
partial derivatives were also a topic of modern research [1,3,4,6,9,11,14,17-19, 24].
The mixed problem for a strongly nonlinear equation of beam vibrations in
a bounded domain was in detail studied in [17]. The case of a weakly nonlinear
equation in an unbounded space domain was, in particular, considered in [18,19]. The
question of existence of the unique generalized solution to the mixed problem for a
strongly nonlinear beam vibrations type equation in the domain © x [0, 400) (€2 is
a bounded domain) and a behavior of this solution as ¢ — oo were analyzed in [4].
The mixed problem for the nonlinear third-order equation was also investigated in
the same domain in [6]. The existence of a unique classical solution, stable under
perturbations of the initial data, was there proved, as well as the behavior of this
solution as t — oo was described. The conditions for existence of local and global
solutions to the mixed problem in Sobolev spaces were formulated in [1]. The case,
where the degree of nonlinearity in the main part is a function of space variables was
studied in [3].

The phenomena of nonexistence of solutions global in time (also known as blowup)
was considered in [14,24], in particular, for the hyperbolic fourth-order equation it was
studied in [11]. In [9] the sufficient conditions for existence of local and nonexistence
of global in time solutions to a mixed problem for a hyperbolic third-order equation
with the integral term were discussed. This integral term simulates the well-known
phenomena of “memory” in oscillation processes. The description of mathematical
model of propagating longitudinal waves in the inhomogenous rod one can consult [23].
The mixed problem for some nonlinear fifth-order equation similar to the previous
view without integral term was proposed in [21].

Important questions of existence and stability as ¢ — 400 of solutions to nonlinear
Hamilton-Jacobi equation in suitable functional spaces were studied in [15, 16], where
there were devised effective tools for investigating nonlinear evolution problems based
on the fixed point approach stemming from [10]. A related general method for studying
the solution existence, based on the Leray-Schauder fixed point approach within the
Calogero type projection-algebraic scheme of discrete approximations, was suggested
for linear and nonlinear differential-operator equations in Banach spaces in [12].

The main aim of our paper is to establish sufficient conditions for the nonexistence
of global solution to a mixed problem for some fifth-order partial differential equation
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with a fourth order spatial derivative. As a main tool, the method of estimating
the energy functional for the mechanical oscillation system will be used.

2. PROBLEM STATEMENT. EXISTENCE OF LOCAL SOLUTION

Let T > 0 be an arbitrary number, Q C R (n > 1) be a bounded domain with the
smooth bound 99 of class C'. Denote Q, = Q x (0,7), S, = 9Q x (0,7), Q, =
{(z,t) 2z € Q, t=7}, 7€[0,T].

We will consider the following nonlinear evolution fifth-order equation in the
domain Qr:

ut Y D% (aap(@)D%u) + Y DP (bap(x) Dw)
la|=|B|=2 la|=|8|=2
+ D® (b (2)|D*u|9"? D)
la=2 (2.1)

olel
where D% = m, a = (Cvl;...,an)a o € NU{O}, = 1,...,m,

|o| = a1 + ... + oy, with initial conditions

ult=0 = ug(x), (2.2)

Ut|e=0 = w1 ()

and boundary conditions
ou
u|5 = O, - = O, (2.4)
ov g
v is the external normal unit vector of the surface 0f2.

Problem (2.1)—(2.4) is multidimensional generalization of rheological nonlinear
Voigt-Kelvin model. An influence of the internal friction as a result of waves dispersion
on the accidental inhomogeneous material is investigated in this model [23].

Assume the next conditions are satisfied.

(A) aap € L®(Q), ol = |8 =2,

S Gap(@)éats > A2 Y lel®, A2 >0,
lo|=18]=2 o] =2
for arbitary real numbers &,, |a| = 2, and almost all z € Q.

(B) bap € L=(), o] = |B] =2,

ST bap(a)eas = Ba Y [eal’, Ba>0,

lo=[B]=2 lor|=2
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for arbitrary real numbers &,, |a| = 2, and for almost all z € Q; bag(x) = bga(2)
for almost all x € Q.
Bl) by € L™(9), bo(x) > bg > 0 for almost all z €  and for all «, |a| = 2.
(C) ce L™(2), c(x) > co > 0 for almost all z € Q.
(D) do € L>®(), do(x) > do > 0 for almost all x € Q and for all «, |a] =
dz = esssup Y. d%(z).
Q |a|=2

(G) g(t) >0, ¢'(t) <0 for all t € [0, +00),

(

t

G(t) := /g(T) dr >0, G(+00)=G< ;p— 432, I(t) := By — G(t)ds > 0,

-3
0

I(+00) = By — Gds = 1 > 0.

(PQ) p>q>2.
(U) ug,u; € WH(Q).

Definition 2.1. Function u : Q x [0,7) — R (T is a positive number or +00) such
that

u € C([0,To; W () N LP((0, To); L (), w, € C([0, To]; Wy (92)),

ue € L((0,To); L2())

for arbitrary number Ty from (0,7") denote generalized solution of the problem
(2.1)-(2.4) in the domain Qr, if it satisfies the initial conditions (2.2), (2.3) and
an integral identity

/{uttv—&- Z aag(x)D“utDBv

3, lal=18]=2
+ 2)D*uD’v + Y bo(x)|D%u|T2D*uD
Z uDPv Z x)| | u (2.5)
la|=[8|=2 |a|=2
¢
/ Z do(x)D%u(x,0) D df — co(x )|u\p72uv}da:20
0 loa]=2

for almost all ¢ € (0,7 and for all v € W2'%(Q) N LP(Q). In case T = +o0, solution is
called global.

Remark 2.2. If T' < +00, then solution is called local. Under some conditions on the
coeflicients, right part of equation and initial data it is possible to find a finite time
moment T" (depending on the coefficients, right part of equation and initial data), such
that the local solution u of the problem (2.1)—(2.4) exists in the domain Q. Sufficient
conditions of local in time solution existence of the previous problem are proved via
Faedo-Galerkin method [10] in [20] (see Theorem 1 therein).
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3. THE MAIN RESULT. SUFFICIENT CONDITIONS OF BLOWUP

Further we will use the following notation:
1/r 1/2
Jolls = lole) = ( Jblraz) s D% = ( [ S i)
|| =2

Taking into account p < 2” 1> 1 >4, via Sobolev imbedding theorem the next is true
H%(Q) C LP(), i.e.
lullp < BlID?ull2, B> 0.

Denote

By = BI"Y2, C =esssupc(z), A=esssup Z aiﬁ(m).
Q Q

Let us consider the functional (energy functional) of the form

E(t):% / [u§+ > ba (x)DauDBu}d:r
Qy

| =[B]=2
/ Z bo ()| DYu|? dx — f/c(z)|u|p dx
Qt |a]=2 Q
(3.1)
1 2
+§/g /lz:Qd z)|D%u(x,0) — D*u(x,t)|? dz df
0 Qq |

—fG /Zd | D¥u(x,t)|? dz, te[0,T).

Q, lal=2

Let us denote

1
Ey = 2/{u2 Z bas(x DauoDﬁuo] dx

la=|B8|=2
/ S bal@)| Dol i — - / (@)l da.
lor|=2
p_2 -2 5~ 2f2
B =C"Zc =B 7
1 2p C 1

Theorem 3.1. Suppose that the conditions indicated above are satisfied and,

furthermore, p < 2% jfn > 4; 2 < ¢ < pf, Ey < Ey, ||D?ugll2 > g—;o%.

Then a global solution of problem (2.1)—(2.4) does not exist.
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4. THE MAIN RESULT PROOF

Assume the contrary, i.e., assume that global solutions of problem (2.1)—(2.4) exist. It
follows from the definition of generalized solution that the function E(t), ¢ € [0, +00),
is continuous and its restriction to an arbitrary segment [0,7), 7 > 0, is an absolutely
continuous function. Moreover, it is obvious that E(0) = FEy. Let function u is the
global solution of the problem (2.1)—(2.4). Then it satisfies (2.5). Considering v = uy
n (2.5), one can obtain identity

% B/{u% > bag(a)D*uD’u }d:ch / > bal |D0‘u|qu]

Q la|=[B8|=2 |or|=2

A sl ] 3 o,

3, g, lal=18l=2

¢
—/g /Zd x)D%u(x, 0)D%u(x, t) de dfd = 0
0 Qo |a]=2

for almost all ¢t € [0, 4+00). We will transform integral

/ ot —0) / S (@) Du(, 0) D%y, 1) d dO
0
= [ g(t— 9)/ Z do(2)D%uy(z,t)[Du(x,0) — DYu(z,t)] da db
+/g(t—0) dt/ > do(x)D*u(z, t)Duy(x, t) da
0 Q

:—%/g(t— /Z do(2)| Dz, 6) — Du(z, t)|? dz df
0

Qp lol=2
1] d
- el «@ 2
+ 2/9(0)d9dt/ > do(@)| D u(w, 1) dx
0 Ion |a]=2
Ld[
e o «@ o «@ 2
5 i Ug(t 9)/ > do(@)|Du(, 0) — Du(x,1)] dxda}
0 Qo |a]=2
1 t
2
+§/g /le;z )| D%u(x, 0) — D*u(z, t)|? dx do
0 Qg &

;j[/ dQ/Zd )| D u(z, )| dw}—g /Zd )| D%u(x, )|* da.

Qs 1,j=1
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Based on the last equality it follows from (4.1) that

1
2[2/[%% > bas(z)D*uD’u }dwr /Zb |Df’qua,}

O |a]=|B|=2 Q, lal=2

- C‘i B/c(x)wdx}

Q4

:7/ Z aaﬁ(z)DautDBut dz
Q, lal=[8]=2

t

1d

5 o0 [ du@IDtute0) - Dute 0P doas
0 Qo |a|=2

1 a a 2
+§/ / Zd )| D%u(x, 0) — D%u(x,t)|* dx df
0 Qo || =2
+1— 0)do | > do(x)|D*u(x,t)*d
5 7 u(x x
0 Qt |a\ 2
/Z do ()| Du(z, t)|?da
O, lol=2
< - Z aag(x)DautDBut dx

g, lal=18=2

t

C‘lit[/ (t—0 /Zd )| D%u(x, 0) — Du(z,t)]? dmd&}

0 Qp lal=2

t
li/
2d

0

do ()| D*u(z, t)|? dm} .

Ia\ 2
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One can obtain

1
E’(t):% [2/[u§+ > bag(z)D*uD u }der /Z b ()| Du|? da

&, la|=18]=2 | =2

¢
ld « a 2
+2dt[/ /Z do(2)|D%u(z,0) — Du(z,t)|* dx df
0

Qp lol=2
t
/g / Z do(z)| DY u(x t)|2dx}
0 Q, lel=2

< — Z aa,g(x)DautDﬂut dr <0
Q, lal=181=2

for almost all ¢ € [0, 4+00). From (3.1) it follows the conclusion

1
B = U010l + 5luld+ 5 [ 3 ba@Doulrds
Q, |a|=2
1 1 /
—f/c(x)|u|pdm+f/ (t—10 /Z do(x)|D%u(z,0) — Du(x,t)|? dx db
th O |a]=2
1 «
> SUOIDul + Sl + 5 [ 3 ba@)|Doulrds
Qt |a]=2
1 C
+§/g / > do(@)|Du(,0) — D*u(x,t)[* dwdf — = B2 | D*ul};
0 Qp lal=2 P (4.2)
1 o '
> U0l + 5l + 5 [ 3 ba@)| Dol da
Qt |a|=2
t
+ /g (t—0 / do ()| D*u(, 0) — D*u(w, 1)[2 dz df
0 QG |a\ 2
B 2 «
) 1(t) || D?ull3 + > ba(z)| Dl dx
Qt |a]=2

(NS}

t
lul+ ot =) [ 3 dul@)|D*u(z,0) - Dula,t) do do
0 QG ‘Otl 2
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Therefore,
E(t) > h(&(t)),

where h(y) = 1y? — @

BP
o yP and

0 = Il 4l + 2 [ 3 sa@lD®upraa

o |a]=2

-

t

+/g(t79)/ > dao(@)|Du(,0) — Du(x,t)[* du d6 ’

0 Qp lol=2

__P_
Obviously, yo = C'_ﬁB1 ?~? is the maximum of the function h, because of
h'(y) =y — CBYyP~1. Accordingly,

1 1N\ =2 -2
h(yo) = 5*5 ¢ 2B, = FE1 > Ej.
So there exists such 8 > yg, that h(8) = Ey.
If
1
2
Bo = Z bas(x)DugDPug dz |
Q lal=l81=2
then
» ol 1P
1 CBi B3 2
B 172 2
h(Bo) < 5/ > bas(z)DueD uodm—T (/ > Dy dm)
Q lal=18]=2 Q lal=2
1 CBYB}
<3 > bap(@)D*ugD ug du — #HUOHZ
Q lel=181=2
1 1
< 2/[ > bag(x)DauODﬂuo—i—|u1|2} dx—|—5/ 3™ bal@)| D upl? dx
Q lal=18=2 Q lal=2
1 1 CB'B}
B Pd - Py — 22172 D
[ cluap de+ [ elaluol do - L ol

Qs Q

Since By > [, then h(By) < Eo = h(B). Obviously, By > v/Ba||D?ug||2-
According to the theorem

El 2p
Duglls > 4| 2L -
|| 7‘1’0”2 B2 p_27
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consequently

2

2 p
50>\/E1 p7p2> C~ 72 B, *7 =y

As function h(y) is monotonically decreasing while 8 > yg, taking into account the
last estimations h(By) < h(8), Bo > yo, one can get By > S > yo.

Further we will assume existence of ¢y € [0,+00), such that £(¢y) < B. Since £
is continuous function, ¢ty can be choosed as following &(to) > yo, then yo < 8 < So.
Hence, E(tg) > h(yo) > h(£(tg)) > h(B) = Ep. That is impossible, because E(t) < Ey
for all t € [0,T) by the reason of strongly monotonically decreasing function E(t).

So it is proved, that in case

Ey
Ey < By, ||D? > = ——
0 < Er, [[D7uoll B, 70

exists 8 > yo, such that

0 = [N+l + 2 [ ¥ va@l0vuttao

Qt |a]=2
t 1
2
+/g Z do(x)|D%u(z,0) — Du(z,t)|>dxdd| > B, te[0,+00).
0 Qg ‘Otl 2
(4.3)
Moreover, since E(t) < Ey on (0, +00), based on (4.2) we obtain
L)1 D%ul + & 2 + ba ()| D%ul|? d
SOIDl + SlwlE + L [ ba(e)Doul e
Q, |a]=2
. t
+2/ t—0 /Zd )| D%u(x,0) — D (xt)|2dwd0<E0+f/|u|pdx
0 Qp lol=2
(4.4)

From (4.3) and (4.4) it follows that

1 BYC
fu ully > 287~ By > 27— h(B) =

B or |ull, > BifS.

If [Jull, <1, then [Jull$ < |lull} < B||D?ulj3as2 < s <p.If [lul, > 1, then [lul|5 < [ulb
as 2 < s < p. So there is an obvious estimation

lully < m(ID?*ull3 + llullp), w1 =max{B,1}, s € [2,p]. (4.5)
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Let H(t) = E1 — E(t). Using (4.2) one can get

1
3 (B2 1) 1Dl <

N | =

SIO1D%ull3

B - gl — ¢ [ 3 bal@)D ul7ds

O, lal=2

Additionally

lully > BYS? > nyé’ = BB, "7 C 7

2p
T Yo Clont = To R P
=B, " C 72 =B,"°C T

therefore By < %Hu“ﬁ and taking into consideration (4.6),

1
(B )ID%ulg < ~Bu B+ B0 - Gl - 3 [ S va@IDoltas

Q, |a]=2
. t
5/9 (t—0 do ()| D*u(z, 0) — D*u(z, £)|? d df
0 QG ‘Otl 2
1
+ f/c )|ul|P dx
p
Qq

t

1 N 1
<-HO) - yluli > [ 3 ba@lorards -5 [g-0)
Qt loa]=2 0
« a 2 1 p_2 p
> do(x)|Du(x,0) — Du(x,t)|* dudo + ( - + —— | C|lull?
P 2p
Qp lol=2
<1 [ ~lul = [ 3 bale) DVt
Q |a]=2
t
—/g 3" dala)Du(x,6) - Do‘u(x,t)|2dccd9+;1|u||§}
0 Qg |a\ 2

‘ (4.6)
_ %/g(t—Q)/ S do(@)|D%u(z, 0) — Dua, O da do
/ ~

(4.7)
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From inequalities (4.5) and (4.7) it follows that

nwyw%—mwwmﬁ—/}jb ) Dl de

Q, lal=2

/tg / do(z)| D*u(x,0) — D*u(x,t)|* dz do
0

Qp lal=2

+ gnug], ke > 0,5 € [2,p)].

Since H'(t) > 0 almost everywhere on [0, +00), then H(t) > H(0) = Ey — Ey > 0.
From (4.4) additionally obtain the following

1 1
HO) < B - 3 101073 + gl + 3 [ 5 va@IDoulds

Q, lov|=2
t
41 / > do(@)|Du(,0) — D*u(x,t)* dwdo| + 9||u||P
2 ’ D p
0 Qg |a| 2
/32 IIUIl”
C
sa—§@+5mw
p—2
< —63 *60 *H [
C’
[ell3-
p
Accordingly,
C
0< H(0) < H{#) < Julf, t€0.T). (48)

Hereafter, let

L(t) == H' (1) + E/uut dz,

Q¢
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where € > 0 and « € (0, 1) are arbitrary numbers. Then

L'(t)=1—-a)H *(t)H'(t) + 5/[uf +uuy)de = (1 —a)H *(t)H'(t) + s/uf dx

Qy Q
+5/{c(x)|u|p - Z s () DYuy DPu — Z bag(ac)DauDBu} dx
3, lal=181=2 jal=1l=2
/[Z ba ( |Dauq} dz
. |a|=2
¢
+s/ (t—6 /Z do(2) D%u(x, 0) D*u(x, t) daz df
0 Qg |(,¥| 2
=(1 a)HO‘(t)H/(t)+5/ufdx+s/{c(m)|u”
Q Q
- Z s () Dy DPu — Z bas(x) D*uDPu — Z b ( Dau|q]
|0t|*\5|*2 ler|=]81=2 lor|=2
/g (t—¢0 / Z do( { (2,0) — (x,t)} Du(x,t) dx db
0, lal=2
/ d0/ Z do ()| D%u(z,t)|* dz > (1 — a)H (¢ )H'(t)—i—s/ufdm
O, lal=2 Q
p 651 a2 601 o 2
+e (|u|d—— Z|D |d—— Z|Dut|daj
Q, Q, lel=2 Qt |a]=2
s/{ > bag(@)D*uD?u+ > bal |Dau|q} dx
lo|=[8]=2 lo]=2
52C /
2028 a a 2
- = /g(t—@)/lz2|D u(z,0) — DYu(x, t)|” dx db
0 Qp lal=

/g da/ S [Du(, ) dz+scg/ (a)de/ S IDu(e, ) da,
Q, lal=2

Q, lal=2

where §1, do are arbitrary positive constants, positive constant C; depends on A,
positive constant Cy depends on esssupg Z|a\:2 d? (z), positive constant C3 depends
on ds.
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Therefore,
20> [0 - a0 - 55t 107wl 4 o e [ oo as
Q Q
—E/{ Z bap(z)D*uDPu + Z bo( |D°‘uq} d:c}
lee|=8]=2 la|=2

e [(1 _ 20622> /tg(Q) o — } 1D?ull3

¢
65202 a a 2
-3 /gt— / E |DYu(x,0) — DYu(x,t)|* dx db

0 Qp lol=2

eC 2 2 2 p
> [(1—04)H‘“(t)A2 — 2511] 1D utHQ—l—E/utd:c—i—sp[—H(t)+H(t)+;1)/c(:c)|u| dm}

Q4 Q,

] S mtennaas S o] ane](1- £2)

loe|=18]=2 lee|=2

t t
x /g(e) o — 521] | D?ul|? — 552202 /g(t—e)/ > [Du(x,0) — Du(x,t)[* dz do
0 0

O, lol=2

C
> [(1 —)H™(t) A2 — 51] 1D?ue|3 + elluel|* +ep[ — H(#)
+

03 2 a, 1B « d3ep
2/[|ut|+ Zb()DuDu+ > balx 2)[Dul?| dx + ==
Q

lol=[B]=2 lee|=2

xo/g(t—e)/ S [D%u(z, 0) — Du(a, t)|? da do

O |a|=2
53€p a 12
0)do | > |Du|?dx
Qp lol=2
—|—€(1—53)/c(1‘)|u|p dl‘—€/|: Z baﬁ DauD5u+ Z b |Dau|¢I:|
N Q, lal=l8l=2 |a|=2

t t
_ Cg _ ﬁ 2,12 _ E(SQCQ / _
ve|(1-52) [aoras - 3 ip2u - <22 [y o)
0 0
501:|

/Z |DYu(x,0) — Du(x,t)|? dodf = [(1—a)H () Ay — ——

20
Qp lol=2 !

O3p 1)
X ||D2ut||§+6<1+>||m dx — epH(t) + (Zp1>



On nonexistence of global in time solution. . . 749

/ Z bas(z DauDBudz+s<1>/Zb ) D%u|? dx + (1 — 03)
t

lo|=[8]=2 le]=2

« /c(:v)|u|P dx+s(532p - 522) /tg(t— 9)/ S [D%u(s,0) — Du(w, )| d db
0 0

Qe |a|=2

t
(Sgp 02 (S 2
(-1 52) [aordo+ G ) ipuls
0

(4.9)
and 0 < 03 < 1.
Choosing 6; = H*(t)d4 in (4.9) one can get
eC 03p
L'(t) > {(1 —a)dy — 261]H *(t)|| D?u |3 +5(1 + ) |we||? do — epH (t) +
<63p - 1)/ Z bas(z)D*uDPu dx
|al=I61=2
(53]’1>/ 3" ba()| Dl da
Q, lal=2
t 6 t
e(1 — d3) /c |u|”dw+5(3p —) /g
0 0
> [Du(x,0) — D*u(x,t)|* du do
Qp lol=2
b e\ | 5
3
—e(M 14 2 [a@asiotul - G olpu
2
0
(4.10)

Let us set o = ‘1],%2. By (4.8) and the spaces embeddings L2TP*(Q) C L?(Q), we get

c\* c\* .
()| D2 < (p) 2| D)l < (p) BP| D2ull2° | D2

oBr\” . CBP\° N

(S ipalg < (S8 ) calotuly? = capruly,

IN

Cy = (i) BpaC;g, Cs3 > 0.
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Inequality (4.10) can be rewritten as follows:

C 0
20> |- apds = S E Ol + (14 %8 )l o - epti(e)
4
9sp 9sp G\ (p, _ 2,12
el (5 ) (g () o
0 C40. 4.11
+a[(zp—1>b2— ;4}||D2u||g+€(1—53)co|u||§ (4.1)

t

+E((532p_ 5;) /g(t—e)/ S™ 1Du(x, 0) — Du(a, ) da do.

Qo |a]=2
Due to the conditions of the theorem we can choose the parameters §;, i = 2,3, 4,
so that inequality (4.11) yields
L't) = Cs {H(t) +ID%ull3 + (1Dl + |3 + [l

t (4.12)
+/g(t—0)/ > |Du(x, 0) —Do‘u(x,t)|2dxd9], Cs > 0.

0 Qp lal=2

The next point under consideration

{L(t)]lla = [H“(t) +5s{uut dm} o < GCs {H(t) ™ ”ut“;%a ||u||211“} (4.13)

2
<c7[H<t>+|ut%+|u||5M], s >0, Cr>o.

2 -2 1
anda:q—,thena<fand2§
P 2 1

Since ¢ < Pt < p. Hence

—2a —
2
= < cg<||u|§ 4 ||u||,€)7 lul < Coll D>ull? < Cy { H() + Crollul)],
Cs >0, Cy >0, Cp > 0. Thereby from (413)

L'(t) < Cn {—H(t) D3 + 1Dl + lluelll3 + [lull}

t (4.14)
+/g(t79)/ > [D%u(x,0) Dau(g:,t)ﬁdxda} C11 > 0.

0 Qp lal=2

Taking into account (4.12), (4.14),

L,(t) > (9 |:L(t):| s Ci2 > 0. (415)
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Integrating the both sides of (4.15) by variable 7 from 0 to ¢, obtain the following
1

[L(O)a“l ~ fngt]

(4.16)

l—a *
o

Since
L(0) = H™*(0) + E/uo(x)ul(a:) dz,
Qo

then, in virtue of H(0) > 0, by choosing sufficiently small ¢ > 0 it is possible to obtain
L(0) > 0. Then from (4.16) we deduce the existence of such T* > 0 that

lim L(t) = +o0.
t—T*—0
We arrive at a contradiction with the statement that the function L(¢) is continuous on
[0,400). So u cannot be aglobal solution of the problem (2.1)—(2.4) in the domain Q7.
The theorem is proved.
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