PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Screw Extrusion as a Scalable Technology for Manufacturing Carbon Nanotube-Filled Polylactide Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bottleneck in the widespread use of carbon multiwall nanotube polymer composites is the lack of manufacturing technology that can be used on an industrial scale. In this article, we describe a two-step composite manufacturing technology based on screw extrusion that produces composites characterizing with good dispersion of carbon nanotube filler in polylactide matrix. The first stage involved the fabrication of highly filled masterbatches of 25 wt% of carbon nanotubes. In the second stage, by screw extrusion of the masterbatch mixture with neat polymer, we obtained homogeneous composites with the target filler concentration. The resulting composites with nanotube content ranging from 0.1 to 2 wt%. Mechanical tests including static tension, tensile strength, tensile modulus, three-point bending and impact strength has shown that optimal concentration of the carbon nanotube filler is ranged between 0.5 and 1 wt%. Samples were examined also by SEM, FTIR-ATR, DSC and MFR methods.
Słowa kluczowe
Twórcy
  • Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
  • Łukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Łukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
  • Faculty of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland
Bibliografia
  • 1. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews 2016; 107: 367–392.
  • 2. Hu RH, Ma ZG, Zheng S, Li YN, Yang GH, Kim HK. A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Manuf 2012; 13(7): 1243–6.
  • 3. Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing 2014; 36: 1–9.
  • 4. Sevostyanov MA, Kaplan MA, Nasakina EO, Shatova LA, Tsareva AM, Kolmakova AA. Development of a Biodegradable Polymer Based on High Molecular-Weight Polylactide for Medicine and Agriculture: Mechanical Properties and Biocom- patibility. Dokl Chem. 2020; 490(2): 36–39.
  • 5. Tertyshnaya Y, Jobelius H, Olkhov A, Shibryaeva L, Ivanitskikh A. Polylactide Fiber Materials and their Application in Agriculture. Key Engineering Materials 2022; 910: 617–622.
  • 6. Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia. 2017; 48: 41–57.
  • 7. Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology: current concepts in orthopaedic surgery and future directions. The Bone & Joint Journal 2014; 96–B(5): 569–573.
  • 8. Zhou J, Yu J, Bai D, Lu J, Liu H, Li Y. AgNW/stereo-complex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron. 2021; 32(5): 6080–6093.
  • 9. Al-Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide-perylene derivative for blue biodegradable organic light-emitting diodes. Polymer International 2021; 70(1): 51–58.
  • 10. Ahmed J, Mulla M, Jacob H, Luciano G, T.b. B, Almusallam A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag- ing and Shelf Life 2019; 21: 100355.
  • 11. Ahmed J, Mulla MZ, Al-Zuwayed SA, Joseph A, Auras R. Morphological, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food packaging. Food Packaging and Shelf Life 2022; 32:100812.
  • 12. Androsch R, Schick C, Di Lorenzo ML. Kinetics of Nucleation and Growth of Crystals of Poly(l-lactic acid). Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science 2017; 279.
  • 13. Carothers WH, Dorough GL, Natta FJV. Studies of polymerization and ring formation. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc. 1932; 54(2): 761–772.
  • 14. Kawai F. Polylactic Acid (PLA)-Degrading Microorganisms and PLA Depolymerases. ACS Symposium Series 2010; 1043.
  • 15. Avinc O, Khoddami A. Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem. 2009; 41(6): 391–401.
  • 16. Trivedi AK, Gupta MK, Singh H. PLA based biocomposites for sustainable products: A review. Advanced Industrial and Engineering Polymer Research 2023; 6(4): 382–395.
  • 17. Mokhena TC, Sefadi JS, Sadiku ER, John MJ, Mochane MJ, Mtibe A. Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers 2018; 10(12): 1363.
  • 18. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. J Polym Res. 2022; 29(10): 422.
  • 19. Fu Z, Cui J, Zhao B, Shen SGF, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. Journal of Orthopaedic Translation 2021; 28: 118–130.
  • 20. Shahdan D, Rosli NA, Chen RS, Ahmad S, Gan S. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review. International Journal of Biological Macromolecules 2023; 251: 126214.
  • 21. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC. Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules 2019; 125: 307–60.
  • 22. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56–58.
  • 23. Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T. Strength of carbon nanotubes depends on their chemical structures. Nat Commun. 2019; 10(1): 3040.
  • 24. Zhang P, Su J, Guo J, Hu S. Influence of carbon nanotube on properties of concrete: A review. Construction and Building Materials 2023; 369: 130388.
  • 25. Wu Z, Zhao Y, Yang K, Guan J, Wang S, Gu Y. Enhancing the Mechanical Performance of Fiber-Reinforced Polymer Composites Using Carbon Nanotubes as an Effective Nano-Phase Reinforcement. Advanced Materials Interfaces 2023; 10(3): 2201935.
  • 26. Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiationinduced crosslinking improvements. Nature Nanotech. 2008; 3(10): 626–631.
  • 27. Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polymer Testing 2018; 68: 34–38.
  • 28. Vidakis N, Petousis M, Kourinou M, Velidakis E,Mountakis N, Fischer-Griffiths PE. Additive manufacturing of multifunctional polylactic acid (PLA)— multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites 2021; 7(1): 184–199.
  • 29. Wang L, Qiu J, Sakai E, Wei X. The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing 2016; 89: 18–25.
  • 30. Kaczor D, Bajer K, Domek G, Madajski P, Raszkowska-Kaczor A, Szroeder P. Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite. Acta Mechanica et Automatica 2022; 16(4): 316–324.
  • 31. Kaczor D, Bajer K, Raszkowska-Kaczor A, Domek G, Madajski P, Szroeder P. The Influence of Multiple Extrusions on the Properties of High Filled Polylactide/Multiwall Carbon Nanotube Composites. Materials 2022; 15(24): 8958.
  • 32. Batakliev T, Georgiev V, Kalupgian C, Muñoz PAR, Ribeiro H, Fechine GJM. Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Appl Compos Mater. 2021; 28(4): 1175–1192.
  • 33. Kang H, Kim DS. A study on the crystallization and melting of PLA nanocomposites with cellulose nanocrystals by DSC. Polymer Composites 2023; 44(11): 7727–7736.
  • 34. Standard PN-EN ISO 11357-(1-3):2016-2020 Tworzywa Sztuczne-Różnicowa Kalorymetria Skaningowa (DSC); Część 1: Zasady Ogólne; Część 2: Wyznaczanie Temperatury Zeszklenia i Stopnia Przejścia w Stan Szklisty; Część 3: Oznaczanie Temperatury Oraz Entalpii Topnienia i Krystalizacji. Polish Committe for Standardization 2016–2020.
  • 35. Standard PN-EN ISO 1133-1:2011 Tworzywa Sztuczne-Oznaczanie Masowego Wskaźnika Szybkości Płynięcia (MFR) i Objętościowego Wskaźnika Szybkości Płynięcia (MVR) Tworzyw Termoplastycznych-Część 1: Metoda Standardowa. Polish Committe for Standardization: Warsaw 2011.
  • 36. Standard PN-EN ISO 294-1:2017 Tworzywa sztuczne - Wtryskiwanie kształtek do badań z tworzyw termo-plastycznych; Część 1: Zasady ogólne, formowanie uniwersalnych kształtek do badań i kształtek w postaci beleczek. Polish Committe for Standardization 2017.
  • 37. Standard PN-EN ISO 527-1:2020-01 Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu; Część 1: Zasady ogólne; Część 2: Warunki badań tworzyw sztucznych przeznaczonych do prasowania wtrysku i wytłaczania. Polish Committe for Standardization 2012–2020.
  • 38. Standard PN-EN ISO 178:2019-06 Tworzywa sztuczne - Oznaczanie właściwości przy zginaniu. Polish Committe for Standardization 2019.
  • 39. Standard PN-EN ISO 179-1:2010 Tworzywa sztuczne. Oznaczanie udarności metodą Charpy’ego; Część 1: Badanie nieinstrumentalne. Polish Committe for Standardization 2010.
  • 40. Yadav N, Nain L, Khare SK. Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue. Environmental Technology & Innovation 2021; 24: 101845.
  • 41. Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings 2016; 1725(1): 020101.
  • 42. Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998; 39(2): 267–73.
  • 43. Amorin NSQS, Rosa G, Alves JF, Gonçalves SPC, Franchetti SMM, Fechine GJM. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science 2014; 131(6): 40023
  • 44. Usachev SV, Lomakin SM, Koverzanova EV, Shilkina NG, Levina II, Prut EV. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta 2022; 712: 179227.
  • 45. Mngomezulu ME, Luyt AS, John MJ. Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials 2019; 32(1): 89–107.
  • 46. Memarian F, Fereidoon A, Ghorbanzadeh Ahangari M. The shape memory, and the mechanical and thermal properties of TPU/ABS/CNT: a ternary polimer composite. RSC Adv. 2016; 6(103): 101038–101047.
  • 47. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 2010; 51(3): 730–737.
  • 48. Park SH, Lee SG, Kim SH. Isothermal crystallization behavior and mechanical properties of polylactide/ carbon nanotube nanocomposites. Composites Part A: Applied Science and Manufacturing 2013; 46: 11–18.
  • 49. Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylactide/graphene nanoplatelets composite films: Impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites 2021; 42(6): 2898–2909.
  • 50. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal 2013; 49(11): 3630–3641.
  • 51. Luyt AS, Gasmi S. Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci. 2016; 51(9): 4670–81.
  • 52. Aliotta L, Gigante V, Geerinck R, Coltelli MB, Lazzeri A. Micromechanical analysis and fracture mechanics of Poly(lactic acid) (PLA)/Polycaprolactone (PCL) binary blends. Polymer Testing 2023; 121: 107984.
  • 53. Kumar S, Ramesh MR, Doddamani M, Rangappa SM, Siengchin S. Mechanical characterization of 3D printed MWCNTs/HDPE nanocomposites. Polymer Testing 2022; 114: 107703.
  • 54. Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers 2020; 12(6): 1333.
  • 55. Ronkay F, Molnár B, Nagy D, Szarka G, Iván B, Kristály F. Melting temperature versus crystallinity: new way for identification and analysis of multiple endotherms of poly(ethylene terephthalate). J Polym Res. 2020; 27(12): 372.
  • 56. Batakliev T, Petrova-Doycheva I, Angelov V, Georgiev V, Ivanov E, Kotsilkova R. Effects of Graphene Nanoplatelets and Multiwall Carbon Nanotubes on the Structure and Mechanical Properties of Poly(lactic acid) Composites: A Comparative Study. Applied Sciences 2019; 9(3): 469.
  • 57. Younus MM, Naguib HM, Fekry M, Elsawy MA. Pushing the limits of PLA by exploring the power of MWCNTs in enhancing thermal, mechanical properties, and weathering resistance. Sci Rep. 2023; 13(1): 16588.
  • 58. Ren F, Li Z, Xu L, Sun Z, Ren P, Yan D. Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Composites Part B: Engineering 2018; 155: 405–413.
  • 59. Mat Desa MSZ, Hassan A, Arsad A, Mohammad NNB. Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites. Materials Research Innovations 2014; 18(6): S6-14-S6-17.
  • 60. Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009; 97(3): 929–935.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aac822be-c060-46e6-b510-4dffccf8ddfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.