PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical methodology for analyzing the performance of a solarupdraft tower in various environmental conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates a simplified and fast numerical model of a solar updraft tower. The model applies a novel approach to the calculation of heat transfer from the outside environment to a collector in the tower. Complex calculations of heat transfer are replaced by a properly defined heat flux boundary condition- the value of which depends on the time of day and meteorological conditions. The model was validated by experimental results from a pilot plant in Manzanares, Spain. Calculations were performed in order to investigate the effects of the chimney’s height and the density of the solar radiation. Both of these dependencies were found to be logarithmic. The requirements for a 250 kW plant in various locations with different meteorological conditions were analyzed.
Rocznik
Strony
144--151
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Department of Cryogenics and Aerospace Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Cryogenics and Aerospace Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • CERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland
Bibliografia
  • 1. Pasumarthi, N., and Sherif, S. A. (1998) Experimental and theoretical performance of a demonstration solar chimney model Part I: mathematical model development. International Journal of Energy Research, 22 (3), 277288.
  • 2. Haaf, W., Friedrich, K., Mayr, G., and Schlaich, J. (1983) Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares. International Journal of Solar Energy, 2 (1), 320.
  • 3. Haaf, W. (1984) Solar chimneys part II: preliminary test results from Manzanares Pilot Plant. International Journal of Solar Energy, 2 (2), 141161.
  • 4. Cao, F., Li, H., Zhao, L., Bao, T., and Guo, L. (2013) Design and simulation of the solar chimney power plants with TRNSYS. Solar Energy, 98, Part A, 2333.
  • 5. Fasel, H. F., Meng, F., Shams, E., and Gross, A. (2013) CFD analysis for solar chimney power plants. Solar Energy, 98, Part A, 1222.
  • 6. Guo, P., Li, J., Wang, Y., and Liu, Y. (2013) Numerical analysis of the optimal turbine pressure drop ratio in a solar chimney power plant. Solar Energy, 98, Part A, 4248.
  • 7. Koonsrisuk, A. (2013) Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis. Solar Energy, 98, Part A, 7884.
  • 8. Gong, T., Ming, T., Huang, X., Richter, R. K. de, Wu, Y., and Liu, W. (2017) Numerical analysis on a solar chimney with an inverted U-type cooling tower to mitigate urban air pollution. Solar Energy, 147, 6882.
  • 9. Guo, P., Li, J., Wang, Y., and Wang, Y. (2015) Numerical study on the performance of a solar chimney power plant. Energy Conversion and Management,105, 197205.
  • 10. Zhou, X., Yang, J., Xiao, B., and Hou, G. (2007) Simulation of a pilot solar chimney thermal power generating equipment. Renewable Energy, 32 (10), 16371644.
  • 11. Zhou, X., Yang, J., Xiao, B., Hou, G., and Xing, F. (2009) Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29 (1), 178185.
  • 12. (2014) The Open Source CFD Toolbox User Guide.
  • 13. Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998) A Tensorial Approach to Computational Continuum Mechanics Using Object-oriented Techniques. Comput. Phys.,12 (6), 620631.
  • 14. Bozza, G., Malecha, Z. M., and Weelderen, R. V. (2016) Development and application of a generic {CFD} toolkit covering the heat flows in combined solidliquid systems with emphasis on the thermal design of HiLumi superconducting magnets. Cryogenics,80, 253264.
  • 15. Malecha, Z. M., Jedrusyna, A., Grabowski, M.,Chorowski, M., and Weelderen, R. van (2016) Experimental and numerical investigation of the emergencyhelium release into the LHC tunnel. Cryogenics, 80, 1732.
  • 16. Chini, G., Malecha, Z., and Dreeben, T. (2014) Large-amplitude acoustic streaming. J. Fluid Mech., 744, 329351.
  • 17. Ferziger, J. H., and Peric, M. (1999) Computational Methods for Fluid Dynamics, Springer, Berlin.
  • 18. Issa, R. I., Gosman, A. D., and Watkins, A. P. (1986) The computation of compressible and in compressible recirculating flows by a non-iterative implicit scheme. Journal of Computational Physics, 62 (1), 6682.
  • 19. Chung, T. J. (2002) Computational Fluid Dynamics, Cambridge University Press, Cambridge.
  • 20. Batchelor G. K (2000) An introduction to fluid dynamics, Cambridge University Press.
  • 21. Fasel, H. F., Meng, F., Shams, E., and Gross, A. (2013) CFD analysis for solar chimney power plants. Solar Energy, 98, 1222.
  • 22. Aurelio, M., and Bernardes, S. (2017) Preliminary stability analysis of the convective symmetric converging flow between two nearly parallel stationary diskssimilar to a Solar Updraft Power Plant collector. SolarEnergy, 141, 297302.
  • 23. Fox, B. (2014) Wind power integration: connectionand system operational aspects, IET.
  • 24. Kalogirou S.A (2013) Solar energy engineering: processes and systems, Academic Press.
  • 25. (2003) Grid convergence error analysis for mixed-order numerical schemes.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aac49a4f-2dcb-44d3-90c5-547536044e59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.