Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The proper functioning of the fuel cell system depends on the proper operation of all its subsystems. One of the key subsystems is the oxidant supply system, which is responsible for supplying oxygen for the electrochemical reaction taking place in the cell. It also transports the reaction products, i.e., water, outside the fuel cell stack, and in some cases removes excess heat generated in the stack. Changes in the technical condition of machine individual elements always result in changes in operating or residual parameters; however, it is necessary to select appropriate diagnostic methods to be able to use these changes to assess the machine’s technical condition. This article presents the results of research focused on assessing the possibilities of diagnosing the oxidant supply subsystem, in particular, too low an oxidant flow leading to oxygen starvation and cathode flooding, based on the analysis of the voltage occurring in individual cells of the stack as well as on the basis of vibration and acoustic emission (AE) measurements. The presented results show that the faulty operation of that system can be indicated either through electrical and vibroacoustic/acoustic emission measurements.
Rocznik
Tom
Strony
197--205
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, ul. Śmidowicza 69, 81-127 Gdynia, Poland
autor
- Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, ul. Śmidowicza 69, 81-127 Gdynia, Poland
Bibliografia
- [1] Barbir, F. (2005). PEM Fuel Cell Theory and Practice, Elsevier/Academic Press, Burlington.
- [2] Benmouna, A., Becherif,M., Depernet, D., Gustin, F., Ramadan, H. and Fukuhara, S. (2017). Fault diagnosis methods for proton exchange membrane fuel cell system, International Journal of Hydrogen Energy 42(2): 1534-1543.
- [3] Bethapudi, V., Maier, M., Hinds, G., Shearing, P., Brett, D. and Coppens, M.-O. (2019). Acoustic emission as a function of polarisation: Diagnosis of polymer electrolyte fuel cell hydration state, Electrochemistry Communications 109: 106582.
- [4] Bohse, J. (2004). Acoustic emission examination of polymer-matrix composites, Journal of Acoustic Emission 22: 208-223.
- [5] Fox, E.B. and Colon-Mercado, H.R. (2011). Mass transport limitations in proton exchange membrane fuel cells and electrolyzers, in H. Nakajima (Ed.), Mass Transfer, IntechOpen, Rijeka, Chapter 13, pp. 305-318, DOI: 10.5772/20349.
- [6] He, Y., Li, M., Meng, Z., Chen, S., Huang, S., Hu, Y. and Zou, X. (2021). An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems, Mechanical Systems and Signal Processing 148: 107146.
- [7] Hissel, D. and Péra, M.-C. (2016). Diagnostic & health management of fuel cell systems: Issues and solutions, Annual Reviews in Control 42: 201-211.
- [8] Legros, B., Thivel, P.-X., Bultel, Y., Boinet, M. and Nogueira, R. (2010). Acoustic emission: Towards a real-time diagnosis technique for proton exchange membrane fuel cell operation, Journal of Power Sources 195(24): 8124-8133.
- [9] Legros, B.and Thivel, P.-X., Bultel, Y. and Nogueira, R. (2023). PEMFC on line diagnosis via acoustic emission measurements, https://www.sintef.no/globalassets/project/fc-tools/dokumenter/presentation/4a/thivel.pdf.
- [10] Lipiec, B., Mrugalski, M., Witczak, M. and Stetter, R. (2022). Towards a health-aware fault tolerant control of complex systems: A vehicle fleet case, International Journal of Applied Mathematics and Computer Science 32(4): 619-634, DOI: 10.34768/amcs-2022-0043.
- [11] Matsuura, T., Chen, J., Siegel, J.B. and Stefanopoulou, A.G. (2013). Degradation phenomena in PEM fuel cell with dead-ended anode, International Journal of Hydrogen Energy 38(26): 11346-11356.
- [12] Najafi, B., Bonomi, P., Casalegno, A., Rinaldi, F. and Baricci, A. (2020). Rapid fault diagnosis of PEM fuel cells through optimal electrochemical impedance spectroscopy tests, Energies 13(14), Paper ID: 3643.
- [13] Niroumand, A.M., Mérida, W. and Saif, M. (2011). PEM fuel cell low flow FDI, Journal of Process Control 21(4): 602-612.
- [14] Ogawa, M. (2020). Toshiba hydrogen business and fuel cells, https://www.bdi.fr/wp-content/uploads/2020/12/Toshiba-H2-biz-and-FC-Rev0-16dec2020.pdf.
- [15] Pivac, I., Radica, G., Barbir, F., Benouioua, D., Harel, F. and Candusso, D. (2017). Diagnostic methods for automotive fuel cell systems, Technical Report D-1.4, European Commission, Brussels, https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b77c06fa&appId=PPGMS.
- [16] Polak, A. (2017). PEM hydrogen fuel cells-Experimental studies on the effect of oxygen flow rate on the polymer membrane, Polymer Processing 176(2): 123-133, (in Polish).
- [17] Taniguchi, A., Akita, T., Yasuda, K. and Miyazaki, Y. (2008). Analysis of degradation in PEMFC caused by cell reversal during air starvation, International Journal of Hydrogen Energy 33(9): 2323-2329.
- [18] van Biert, L., Godjevac, M., Visser, K. and Aravind, P. (2016). A review of fuel cell systems for maritime applications, Journal of Power Sources 327: 345-364.
- [19] Wang, H., Yuan, X.-Z. and Li, H. (Eds) (2011). PEM Fuel Cell Diagnostic Tools, CRC Press, Boca Raton, DOI: 10.1201/b11100.
- [20] Wu, J., Zi Yuan, X., Wang, H., Blanco, M., Martin, J.J. and Zhang, J. (2008). Diagnostic tools in PEM fuel cell research. Part II: Physical/chemical methods, International Journal of Hydrogen Energy 33(6): 1747-1757.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aac0f81b-bff5-4dcd-a123-a6314b6f0ac0