PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bonding Properties of TiAlCrSiN Coating / WC-8Co Cemented Carbide with Microtextured Surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Twórcy
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  • Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  • Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  • Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  • Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  • Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
autor
  • Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
Bibliografia
  • [1] M. Li, Z.L. Song, M.F. Gong, et al., WC+Co+graphene platelet composites with improved mechanical, tribological and thermal properties [J]. Ceramics International 47 (21), 30852-30859 (2021).
  • [2] M.F. Gong, J. Chen, X. Deng, et al., Sliding wear behavior of Tialn and AlCrN coatings on a unique cemented carbide substrate [J]. International Journal of Refractory Metals and Hard Materials 69, 209-214 (2017).
  • [3] D.H. Xiang, H.R. Feng Z.H. Guo, et al., Preparation technology and properties of microtexture diamond-coated tools [J]. International Journal of Refractory Metals and Hard Materials 76, 16-24 (2018).
  • [4] J.T. Wang, X.L. Bai, X.H. Shen, et al., Effect of microtextured on substrate surface on adhesion performance of electroless NiP coating [J]. Journal of Manufacturing Processes 74, 296-307 (2022).
  • [5] A.X. Feng, B. Wang, Y. He et al., Study on influence of laser microtextured on bonding properties of cemented carbide TiAlN coating [J]. Hot Working Process 46 (14), 155-158 (2017).
  • [6] X.H. Zhan, Y.C. Liu, P. Yi, et al., Spreading analysis of plasma spray droplet on sinusoidal textured surfaces [J]. Surfacing 50(08), 109-121 (2021).
  • [7] C.H. Liu, J. Li, Z.T. Wu, et al., Preparation and cutting performance of TiAlSiN coatings by pulsed arc ion plating [J]. China Surface Engineering 31 (06), 44-54 (2018).
  • [8] T.C. Fu, S.J. Yan, C.X. Tian, et al., CrAlTiN and CrAlTiSiN nanocomposite coatings deposited by multi-arc plasma deposition [J]. China Surface Engineering 26 (01), 20-26 (2013).
  • [9] D.K. Shetty, I.G. Wright, P.N. Mincer, Indentation fracture of WC-Co cermets [J]. Journal of Materials Science 20, 1873-1882 (1985).
  • [10] Q.J. Ding, Y. Zheng, Z. Ke, et al., Effects of fine WC particle size on the microstructure and mechanical properties of WC-8Co cemented carbides with dual-scale and dual-morphology WC grains [J]. International Journal of Refractory Metals and Hard Materials 87, 105166 (2020).
  • [11] Y.Q. Ye, H.Y. Xia, Y.J. Lin, et al., Refined WC grain size and improved mechanical properties in a hardmetal WC-8Co processed via short-time semi-solid hot pressing [J]. Journal of Alloys and Compounds 889, 161560 (2021).
  • [12] Y. He, A.X. Feng, H.X. Zhang, et al., Cemented carbide substrate micro texture and the influence on the bonding properties of the TiAlN coating film-based [J]. Applied Laser 34 (06), 504-507 (2014).
  • [13] K.D. Zhang, C. Zhang, H.S. Li et al., Study on the substrate surface micro-texturing/carburizing regulating the film-substrate adhesion and wear behavior of DLC coatings [J]. Diamond and Related Materials 130, 109535 (2022).
  • [14] Robert O. Ritchie, The conflicts between strength and toughness [J]. Nature Materials 10 (11), 817-822 (2011).
  • [15] J. Wang, Z.Y. Li, J.S. Luo, et al., Effects of three-dimensional roughness parameters of sandblasted surface on bond strength of thermal spraying coating [J]. Surfacing 48 (05), 246-252+285 (2019).
  • [16] L.H. Zhu, T. Hu, X. Peng, et al., Effect of al content on adhesion strength of TiAlN coatings [J]. Journal of Material Heat Treatment. 36 (03), 154-158 (2015).
  • [17] K. Huang, F.L. Yang, L.X. Chen, et al., Study on the adhesion strength of a TiAlN coating by scratch tester [J]. Surface Technology 42 (05), 107-111 (2013).
  • [18] J. Du, M. Wang H.X. Wang, Analysis of influencing factors on critical load of adhesion strength in scratch test [J]. Surface Technology 44 (09), 134-139 (2015).
  • [19] J.T. Wang, X.L. Bai, X.H. Shen, et al., Effect of microtextured on substrate surface on adhesion performance of electroless NiP coating [J]. Journal of Manufacturing Processes 74, 296-307 (2022).
  • [20] H. Fu, Y.Y. He, J. Yang, et al., Enhancing adhesion strength of PVD AlCrN coating by novel volcano-shaped microtextures: Experimental study and mechanism insight [J]. Surface & Coatings Technology 445, 128712 (2022).
  • [21] Y. Meng, J.X. Deng, J.X. Wu, et al., Improved interfacial adhesion of AlTiN coating by micro-grooves using ultrasonic surface rolling processing [J]. Journal of Materials Processing Technology 304, 117570 (2022).
  • [22] D.H. Yu, C.Y. Wang, X.L. Cheng, et al., Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology [J]. Thin Solid Films 517 (17), 4950-4955 (2009).
  • [23] T. Sprute, W. Tillmann, D. Grisales, et al., Influence of substrate pre-treatments on residual stresses and tribo-mechanical properties of TiAlN-based PVD coatings [J]. Surface and Coatings Technology 260, 369-379 (2014).
  • [24] S.G. Croll, Surface roughness profile and its effect on coating adhesion and corrosion protection: A review [J]. Progress in Organic Coatings 148, 105847 (2020).
Uwagi
1. This work was supported by the National Natural Science Foundation of China (52005239), Guangdong Provincial Natural Science Foundation of China (2018A030307017) and the Innovative Team in Higher Educational Institutions of Guangdong Province (Natural Science) (Grant No. 2020KCXTD039).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aab9d066-1f35-4569-b830-a23f3497ebee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.