PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The practical stability of the discrete, fractional order, state space model of the heat transfer process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the practical stability problem for the discrete, non-integer order model of one dimmensional heat transfer process is discussed. The conditions associating the practical stability to sample time and maximal size of finite-dimensional approximation of heat transfer model are proposed. These conditions are formulated with the use of spectrum decoposition property and practical stability conditions for scalar, positive, fractional order systems. Results are illustrated by a numerical example.
Rocznik
Strony
463--482
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wzory
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • High Vocational School in Tarnow, al. A. Mickiewicza 8, 33-100 Tarnow, Poland
Bibliografia
  • [1] K. Balachandran and J. Kokila: On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science, 22 (3): 523-531, 2012.
  • [2] K. Bartecki: A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science, 23 (2): 291-307, 2013.
  • [3] M. Buslowicz and T. Kaczorek: Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science, 19 (2): 263-269, 2009.
  • [4] R. Caponetto, G. Dongola, L. Fortuna, and I. Petráš: Fractional order systems: Modeling and control applications, In L. O. Chua, editor, Series on Nonlinear Science, pages 1-178. University of California, Berkeley, 2010.
  • [5] S. Das. Functional Fractional Calculus for System Identyfication and Control, Springer, Berlin, 2010.
  • [6] M. Dlugosz and P. Skruch: The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics, 1 (1): 1-13, 2015.
  • [7] A. Dzielinski, D. Sierociuk, and G. Sarwas: Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences, Technical Sciences, 58 (4): 583-592, 2010.
  • [8] T. Kaczorek: Practical stability of positive fractional discrete-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences, 56 (4): 313-317, 2008.
  • [9] T. Kaczorek: Reachability of cone fractional continuous time linear systems, International Journal of AppliedMathematics and Computer Science, 19 (1): 89-93, 2009.
  • [10] T. Kaczorek: Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Science, 21 (2): 379-384, 2011.
  • [11] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, Bialystok, 2014.
  • [12] W. Mitkowski: Stabilization of dynamic systems (in Polish), WNT, Warszawa, 1991.
  • [13] W. Mitkowski: Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica, 5 (2): 65-68, 2011.
  • [14] D. Mozyrska and E. Pawluszewicz: Fractional discrete-time linear control systems with initialisation, International Journal of Control, 1 (1): 1-7, 2011.
  • [15] A. Obraczka: Control of heat processes with the use of non-integer models. PhD thesis, AGH University, Krakow, Poland, 2014.
  • [16] K. Oprzedkiewicz: The interval parabolic system. Archives of Control Sciences, 13 (4):415-430, 2003.
  • [17] K. Oprzedkiewicz: An observability problem for a class of uncertainparameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science, 15 (3): 331-338, 2005.
  • [18] K. Oprzedkiewicz and E. Gawin: A non integer order, state space model for one dimensional heat transfer process, Archives of Control Sciences, 26 (2): 261-275, 2016.
  • [19] K. Oprzedkiewicz, E. Gawin, and W. Mitkowski: Modeling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science, 26 (4): 749-756, 2016.
  • [20] K. Oprzedkiewicz, E. Gawin, and W. Mitkowski: Parameter identification for non integer order, state space models of heat plant, In MMAR 2016: 21th International Conference on Methods and Models in Automation and Robotics: 29 August-01 September 2016, Międzyzdroje, Poland, pages 184-188, 2016.
  • [21] P. Ostalczyk: Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science, 22 (3): 533-538, 2012.
  • [22] I. Podlubny: Fractional Differential Equations, Academic Press, San Diego, 1991.
  • [23] E. Popescu: On the fractional cauchy problem associated with a feler semigroup, Mathematical Reports, 12 (2): 181-188, 2010.
  • [24] A. Ruszewski: Practical and asymptotic stability of fractional discretetime scalar systems described by a new model, Archives of Control Sciences, 26 (4): 441-452, 2016.
  • [25] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski: Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation, 257 (1): 2-11, 2015.
  • [26] Q. Yang, F. Liu, and I. Turner: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34 (1): 200-218,
Uwagi
EN
1. This paper was partially sponsored by AGH project no 11.11.120.815.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aab701f8-38e5-4c60-b6cd-1cc2cf5d5255
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.