Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ kierunkowości struktury geometrycznej powierzchni na nośność połączeń klejowych
Języki publikacji
Abstrakty
The aim of the work was to investigate the influence of the directivity of the geometric structure obtained in the grinding process on the load capacity of single-lap adhesive joints made of steel S235JR and aluminum alloy 2024-T3. The research was carried out for five different variants of joints differing in the direction of grinding and the arrangement of the ground surfaces to each other. The test results show that in the case of steel joints, the most advantageous solution in terms of joint load capacity is grinding the adhesive surfaces at an angle of 45 ̊ to the direction of the force loading the joint and connecting them in such a way that the created texture crosses (joint load capacity Pt = 4667.36 N). However, in the case of joints made of aluminum alloy, the best solution is to grind the adhesive surfaces perpendicular to the direction of the force loading the joint (joint load capacity Pt = 3210.46 N). The results of the significant difference test (test-t) show that in the assumed range of variability of the input parameters, the directionality of the geometric structure has a significant impact on the load capacity of the adhesive joints.
Celem pracy było zbadanie wpływu kierunkowości struktury geometrycznej, uzyskanej w procesie szlifowania, na nośność jednozakładkowych połączeń klejowych wykonanych ze stali S235JR oraz ze stopu aluminium 2024-T3. Badania przeprowadzono dla pięciu różnych wariantów połączeń różniących się kierunkiem szlifowania i ułożeniem szlifowanych powierzchni klejonych względem siebie. Wyniki badań wskazują, że w przypadku połączeń ze stali, najkorzystniejszym rozwiązaniem pod względem nośności złącza jest szlifowanie powierzchni klejonych pod kątem 45 ̊ względem kierunku działania siły obciążającej złącze i sklejenie ich w taki sposób, aby utworzona tekstura się krzyżowała (nośność połączeń Pt = 4667,36 N). Natomiast w przypadku połączeń ze stopu aluminium, najkorzystniejszym rozwiązaniem jest szlifowanie powierzchni klejonych prostopadle względem kierunku działania siły obciążającej złącze (nośność połączeń Pt = 3210,46 N). Wyniki testu znaczących różnic (test-t) wskazują, że w przyjętym zakresie zmienności parametrów wejściowych, kierunkowość struktury geometrycznej ma istotny wpływ na nośność połączeń klejowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
36--43
Opis fizyczny
Bibliogr. 27 poz., fot. kolor., wykr.
Twórcy
autor
- Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Katedra Technologii Maszyn i Inżynierii Produkcji, al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
autor
- Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Katedra Przeróbki Plastycznej, al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
autor
- Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Katedra Technologii Maszyn i Inżynierii Produkcji, al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
Bibliografia
- [1] Adamczak S. 2008. Pomiary geometryczne powierzchni. Zarysy kształtu, falistość i chropowatość. Warszawa: Wydawnictwo Naukowo-Techniczne.
- [2] Dilger K., Burchardt B., Frauenhofer M. 2018. “Automotive Industry”. In da Silva L. F. M., Öchsner A., Adams R. D. (ed.) Handbook of Adhesion Techno- logy, 1332-1366 . Springer International Publishing AG.
- [3] Etsion I. 2005. “State of Art in Laser Surface Texturing”. Journal of Tribology 127: 248-253.
- [4] Feng Z., Zhao H., Tan C., Zhu B., Xia F., Wang Q., Chen B., Song X. 2019. “Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints”. Journal of Manufacturing Processes 47: 219-228.
- [5] Ghumatkar A., Budhe S., Sekhar R., Banea M. D., de Barros S. 2016. “Influence of Adherend Surface Roughness on the Adhesive Bond Strength”. Latin American Journal of Solids and Structures 13: 2356- 2370.
- [6] Grzesik W. 2016. “Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of Art”. Journal of Materials Engineering and Performance 25: 4460-4468.
- [7] Kłonica M., Kuczmaszewski J. 2018. Badania stanu energetycznego warstwy wierzchniej wybranych materiałów konstrukcyjnych po ozonowaniu. Lublin: Wydawnictwo Politechniki Lubelskiej.
- [8] Komorek A., Godzimirski J. 2018. “The influence of selected adhesive properties and the manner of surface preparation upon impact strength of block adhesive joints”. Journal of KONES Powertrain and Transport 25: 463-469.
- [9] Kuczmaszewski J. 2006. Fundamentals of metal-metal adhesive joint design. Lublin: Lublin University of Technology Polish Academy of Sciences, Lublin Branch.
- [10] Liu S., Jin S., Zhang X., Chen K., Wang L., Zhao H. 2018. “Optimization of 3D surface roughness induced by milling operation for adhesive-sealing”. Procedia CIRP 71: 279-284.
- [11] Loctite 3430 technical data, http://elektronika.mcc.pl/ system/files/1545/loctite-ea-3430.pdf [access: April 2021].
- [12] Loutas T. H., Kliafa P. M., Sotiriadis G., Kostopoulos V. 2019. “Investigation of the effect of green laser pre-treatment of aluminum alloys through a design-of-experiments approach”. Surface & Coatings Technology 375: 370-382.
- [13] Mandolfino C., Pizzorni M., Lertora E., Gambaro C. 2018. „Laser surface texturing of polypropylene to increase adhesive bonding”. AIP Conference Proceedings 1960: 060004.
- [14] Pereira A.M., Ferreira J.M., Antunes F.V., Bártolo P.J. 2010. “Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints”. Journal of Materials Processing Technology 210: 610-617.
- [15] PN-EN 10025-1:2007. Wyroby walcowane na gorąco ze stali konstrukcyjnych - Część 1: Ogólne warunki techniczne dostawy. Warszawa: Polski Komitet Normalizacyjny.
- [16] PN-EN 1465:2009. Kleje - Oznaczanie wytrzymałości na ścinanie przy rozciąganiu połączeń na zakładkę. Warszawa: Polski Komitet Normalizacyjny.
- [17] PN-EN 3997:2016-02. Lotnictwo i kosmonautyka - Stop aluminium AL-P2024- AlCu4Mg1 - T3 - Blachy i taśmy - 0,4 mm ≤ a ≤ 6 mm. Warszawa: Polski Komitet Normalizacyjny.
- [18] Rudawska A. 2013. Wybrane zagadnienia konstytuowania połączeń adhezyjnych jednorodnych i hybrydowych. Lublin: Wydawnictwo Politechniki Lubelskiej.
- [19] Rudawska A., Zaleski K., Miturska I., Skoczylas A. 2019. “Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints”. Materials 12: 4173.
- [20] Sorrentino L., Marfia S., Parodo G., Sacco E. 2020. “Laser treatment surface: An innovative method to increase the adhesive bonding of ENF joints in CFRP”. Composite Structures 233: 111638.
- [21] Spadro C., Sunseri C., Dispenza C. 2007. “Laser surface treatments for adhesion improvement of aluminium alloys structural joints”. Radiation Physics and Chemistry 76: 1441-1446.
- [22] Zaleski K., Matuszak J., Zaleski R. 2018. Metrologia warstwy wierzchniej. Lublin: Wydawnictwo Politechniki Lubelskiej.
- [23] Zheng R., Lin J., Wang PC, Wu Y. 2016. “Correlation between surface characteristics and static strength of adhesive-bonded magnesium AZ31B”. The International Journal of Advanced Manufacturing Technology 84: 1661-1670.
- [24] Zielecki W. 2007. „Wpływ rozwinięcia struktury powierzchni na wytrzymałość zakładkowych połączeń klejowych”. Technologia i Automatyzacja Montażu 2 i 3: 108: 111.
- [25] Zielecki W., Pawlus P., Perłowski R., Dzierwa A. 2011. „Analiza wpływu struktury geometrycznej powierzchni w układzie 3D na wytrzymałość połączeń klejowych”. Technologia i Automatyzacja Montażu 1: 33-37.
- [26] Zielecki W., Pawlus P., Perłowski R., Dzierwa A. 2013. „Surface topography effect on strength of lap adhesive joints after mechanical pre-treatment”. Archives of Civil and Mechanical Engineering 13: 175- 185.
- [27] Zielecki W., Zielecki K. 2010. „Analiza MES wpływu struktury geometrycznej powierzchni na stan naprężeń w spoinie klejowej”. Technologia i Automatyzacja Montażu 4: 49-51.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aab65450-b80f-4d28-aa98-14d7cfe1847a