PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ammonium chloride’s weakening effect on the copper activation of pyrite in flotation and the surface regulation mechanism behind it

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional separation process of pyrite and marmatite is carried out under highly alkaline conditions. Therefore, a large amount of lime is demanded and the zinc recovery cannot be guaranteed. However, under weakly alkaline conditions, copper-activated pyrite has good floatability, which is difficult to separate from marmatite. In this paper, ammonium chloride (NH4Cl) is used for depressing the flotation of copper-activated pyrite to achieve the separation of these two minerals under weakly alkaline environment. The flotation tests show that NH4Cl can significantly reduce the floatability of pyrite in weakly alkaline conditions. The results of adsorption tests and X-ray photoelectron spectroscopy (XPS) analyses indicate that NH4Cl can obviously change the composition of pyrite surface by increasing the content of iron/copper hydroxide and reducing the content of copper sulfides. Calculation of the solution composition demonstrates that the addition of NH4Cl results in the occurrence of Cu(NH3)n2+ and the pH buffering property. Based on these results, it can be concluded that the depression of NH4Cl on copper activated pyrite is mainly derived from two aspects: 1) the pH buffering property of the conjugated acid-base pair (NH4+/NH3) can impede the decline of OH- concentration, which results in more hydroxide adsorbed on pyrite; 2) NH3 (aq) competes with the pyrite surface to consume Cu2+through complexation, which causes a reduction in the amount of copper sulfides formed on the pyrite surface.
Rocznik
Strony
1070--1081
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • AHMADI, A., RANJBAR, M., SCHAFFIE, M., 2012. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Minerals Engineering, 34.7, 11-18.
  • BOULTON, ADRIAN, DANIEL FORNASIERO, AND J. RALSTON., 2005. Effect of iron content in sphalerite on flotation. Minerals engineering, 18(11), 1120-1122.
  • BUCKLEY, A. N., HOPE, G. A., LEE, K. C., PETROVIC, E. A., WOODS, R., 2014. Adsorption of o-isopropyl-n-ethyl thionocarbamate on cu sulfide ore minerals. Minerals Engineering, 69, 120-132.
  • BULUT, G., CEYLAN, A., SOYLU, B., GOKTEPE, F., 2012. Role of starch and metabisuphite on pure pyrite and pyritic copper ore flotation. Physicochemical Problems of Mineral Processing, 48(1), 261902-92104.
  • BOULTON, A., FORNASIERO, D., & RALSTON, J., 2001. Depression of iron sulphide flotation in zinc roughers. Minerals Engineering, 14(9), 1067-1079.
  • BICAK, O., EKMEKCI, Z., BRADSHAW, D. J., HARRIS, P. J., 2007. Adsorption of guar gum and CMC on pyrite. Minerals Engineering, 20(10), 996-1002.
  • BIDARI, E., & AGHAZADEH, V., 2015. Investigation of copper ammonia leaching from smelter slags: characterization, leaching and kinetics. Metallurgical & Materials Transactions B, 46(5), 1-10.
  • BOULTON, A., FORNASIERO, D., RALSTON, J., 2003. Characterisation of sphalerite and pyrite flotation samples by XPS and TOF-SIMS. International Journal of Mineral Processing, 70(1), 205-219.
  • DENG, M., KARPUZOV, D., LIU, Q., XU, Z., 2013. Cryo-xps study of xanthate adsorption on pyrite. Surface and Interface Analysis, 45(4), 805-810.
  • DÁVILA-PULIDO, G. I., URIBE-SALAS, A., ESPINOSA-GÓMEZ, R., 2011. Comparison of the depressant action of sulfite and metabisulfite for cu-activated sphalerite. International Journal of Mineral Processing, 101(1), 71-74.
  • EJTEMAEI, M., & NGUYEN, A. V., 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Minerals Engineering, 100, 223-232.
  • EVANGELOU, V. P., ZHANG, Y. L., 1995. A review: pyrite oxidation mechanisms and acid mine drainage prevention. CRC Critical Reviews in Environmental Control, 25(2), 141-199.
  • GUO, B., PENG, Y., ESPINOSA-GOMEZ, R., 2015. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite. Minerals Engineering, 71, 194-204.
  • GAO, Z., SUN, W., HU, Y., 2015. New insights into the dodecylamine adsorption on scheelite and calcite: an adsorption model. Minerals Engineering, 79, 54-61.
  • GHOTBI, M. Y., RAHMATI, Z., 2015. Nanostructured copper and copper oxide thin films fabricated by hydrothermal treatment of copper hydroxide nitrate. Materials & Design, 85, 719-723.
  • HE, S., FORNASIERO, D., SKINNER, W.,2005. Correlation between copper-activated pyrite flotation and surface species: effect of pulp oxidation potential. Minerals Engineering, 18(12), 1208-1213.
  • IUPAC stability constants database, 2001. Sc–database and mini–scdatabase, Timble, UK: Academic Software.
  • JIANG, C. L., WANG, X. H., PAREKH, B. K., LEONARD, J. W., 1998. The surface and solution chemistry of pyrite flotation with xanthate in the presence of iron ions. Colloids and surfaces a physicochemical and engineering aspects.
  • LEPPINEN, J. O., 1990. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. International Journal of Mineral Processing, 30(3), 245-263.
  • MEHRABANI, J. V., MOUSAVI, S. M., NOAPARAST, M., 2011. Evaluation of the replacement of nacn with acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead–zinc ore. Separation & Purification Technology, 80(2), 202-208.
  • MCCLEVERTY, J., 1985. Inorganic-Chemistry - Principles of Structure and Reactivity, 3rd Edition – Huheey, Je. Nature, 314, 30–30.
  • PENG, Y., WANG, B., GERSON, A., 2012. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. International Journal of Mineral Processing, 102(s 102–103), 141-149.
  • QIN, W., JIAO, F., SUN, W., HE, M., HUANG, H., 2012. Selective flotation of chalcopyrite and marmatite by mbt and electrochemical analysis. Industrial & Engineering Chemistry Research, 51(35), 11538-11546.
  • RUMBALL, J. A., & RICHMOND, G. D., 1996. Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA. International Journal of Mineral Processing, 48(1), 1-20.
  • SHEN, W. Z., FORNASIERO, D., RALSTON, J., 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63(1), 17-28.
  • SHEN, W. Z., FORNASIERO, D., RALSTON, J., 1998. Effect of collectors, conditioning pH and gases in the separation of sphalerite from pyrite. Minerals Engineering, 11(2), 145-158.
  • STUMPP, M., HU, M. Y., MELZNER, F., GUTOWSKA, M. A., DOREY, N., & HIMMERKUS, N., et al, 2012. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences,109(44), 18192-18197.
  • SIERRA, J., ROIG, N., GIMÉNEZ, P. G., PÉREZ-GALLEGO, E., SCHUHMACHER, M., 2017. Prediction of the bioavailability of potentially toxic elements in freshwaters. comparison between speciation models and passive samplers. Science of the Total Environment, 605-606, 211.
  • VALDIVIESO, A. L., CERVANTES, T. C., SONG, S., CABRERA, A. R., LASKOWSKI, J. S., 2004. Dextrin as a nontoxic depressant for pyrite in flotation with xanthates as collector. Minerals Engineering, 17(9), 1001-1006.
  • XIAOJUN, X., & Ş. KELEBEK, 2000. Activation of xanthate flotation of pyrite by ammonium salts following it's depression by lime. Developments in Mineral Processing, 13, C8b-43–C8b-50.
  • ZUO, M., RENMAN, G., GUSTAFSSON, J. P., RENMAN, A., 2015. Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment. Water Research, 87, 271-281.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aab3e9d4-832a-4e81-ba91-c0ec37af5200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.