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Abstract

The current core curriculum in mathematics for lower secondary school (3-rd educa-
tional level in Poland) omits formal definitions of concepts related to geometric trans-
formations in the plane and is based on their intuitive sense. Practice shows that the
current approach makes teaching very difficult and the students solve the typical tasks,
not understanding the meaning of geometrical concepts. The article contains basic con-
cepts connected with geometric transformations and examples of geometric tasks that are
solved in the third and also in the fourth educational level in an intuitive way, sometimes
deviating or even incompatible with the mathematical definition. We show how they
could be solved in easier way with introducing definitions of geometric transformations
in a simple and understandable for students way sometimes using vector calculus. We
take into account isometries: reflection and point symmetry, rotation and translation and
similarities with particular consideration on homothetic transformation.

1. Introduction

As the result of permanent reduction of core curriculum in mathematics in
past few years (see [8],[9]) and practical attitude to mathematical tasks (an
old gymnasium exam: from 2002 to 2011), the big problems with teaching
geometric transformations appeared. The three main reasons are:

(1) reduction of contents connected with forming concept of a function;
(2) eliminating vectors;
(3) drastic reduction of contents connected with geometric construc-

tions.
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The above reasons make teaching geometric transformations very dif-
ficult. In this case education is based on an intuitive understanding of
concepts like symmetry, similarity etc. that may cause numerous misunder-
standings. Of course, we do not want to discourage students introducing
difficult mathematical formalism but primary theory is also necessary for
them. The teachers realize that good theoretical bases help to solve math-
ematical tasks ([3], [4], [5], [6], [7]). Some of the educators suppose that
students of the 3-rd educational level are able to understand geometrical
definitions and relations between geometric concepts. According to Dutch
psychologist P. M. Van Hiele model of learning geometry by students one
can say that pupils of lower secondary school are on level 2 (Abstraction).
At this level, properties are ordered. Students understand that properties
are related and one set of properties may imply another property ([1]).

The main goal of this article is to remind the most important concepts
connected with geometric transformations and discuss the possibility of im-
plementing more theory to lessons instead of using intuitive sense. It is very
important now because mathematics became separate subject on the new
gymnasium exam (since 2012) and we hope its role will be increasing. To-
day it is a chance to return to less practical but more mathematical attitude
to solving tasks.

2. Geometric transormations

Let us consider the idea of geometric transformation. If we understand
it intuitively, it is the change of the location of the points that happens
according to some strict rules. So it is a function that relates points of
the plane (or space) to the other points of it. In this article we assume
traditional definition used in polish school mathematics since the sixties
years of the XX century introduced by professor Zofia Krygowska. More
precisely:

Definition 1. Denote as π the arbitrary plane or space. Every bijection
f : π → π is called the geometric transformation.

If we accept the above definition it may cause some problems. The func-
tion in this definition is not numerical. Domain and range of the function are
the sets of points. The students rarely realize that in every geometric trans-
formation the locations of all points change. For example, in school practice
they often find only the images of favoured points (vertices of a polygon) for-
getting that the other points also change location. Similar approach causes
misunderstanding of other important facts. It seems to be obvious that
geometric transformations should be taught after the functions and be the
excellent example of non-numerical ones. It is also problematic to explain
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how to understand the word “bijection” in this case. We suggest such an
explanation:

(1) for the arbitrary two different points X, Y from π their images
f(X), f(Y ) are also different,

(2) every point Y ∈ π has to be the image of some point X ∈ π (i.e.
Y = f(X) for some point X).

It can be helpful to create some drawing of simple transformation (reflec-
tion symmetry) and show that conditions (1) and (2) are satisfied.

3. Vectors and their applications

It is alarming, from the point of teaching geometrical transformations,
that vector calculus was eliminated from core curriculum. Vectors make
definitions of some geometric transformation simpler and shorter. Vector
calculus is also the best and the quickest instrument used in solving math-
ematical tasks from the analytic geometry. The problem is that today
students are supposed to show the result – not to compute it. This way is
not correct. First of all, we are not always able to read the result (from the
drawing). Secondly, tasks often have more than one solution – vector cal-
culus lets us find all the solutions. Of course, free vector is too complicated
question to use at this stage of education but we may identify the vector
with its coordinates and then use this helpful tool. Here are the examples of
using vector calculus in tasks addressed to students in the third educational
level.

Example 1. Check whether the triangle ABC is right-angled, if A = (−1, 2),
B = (0, 0), C = (6, 3).

Standard analytic solutions are:
• computing distances d(A,B), d(A,C), d(B,C) and checking if the
square of one of the distances is equal to the sum of squares of the
other distances (Pythagorean theorem) or
• finding the equations of straight lines AB, BC and AC and checking
if one of the straight lines is perpendicular to the other one.

But the two above solutions are numerically complicated because they
require many various tough calculations. Using vector calculus, we can solve
the problem in easy and quick following way:

We compute the coordinates of the vectors ~AB, ~BC and ~AC:
~AB = [1,−2], ~BC = [6, 3], ~AC = [7, 1].

We now notice that ~AB ◦ ~BC = 0 (scalar product) so these two vectors are
perpendicular and finally the triangle ABC is right-angled.
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Example 2. Check if the tetragon ABCD is a rhomboid, if A = (1, 4),
B = (6, 5), C = (56, 105), D = (51, 104).

Standard solutions are:
• computing the distances d(A,B), d(B,C), d(C,D) and d(D,A) and
checking if we obtain two pairs of equal distances (more precisely:
d(A,B) = d(C,D) and d(A,D) = d(B,C)) or
• finding the equations of straight lines AB, BC, CD and AD and
checking if we have two pairs of parallel lines.

Of course these two ways are not the fastest methods. Let us notice that:
~AB = ~DC = [5, 1].

This fact proves that tetragon ABCD is a rhomboid because the equality
of coordinates of vectors causes not only the equality of the lengths of line
segments but also their parallelism.

Example 3. Calculate the area of a triangle ABC, if A = (1, 6), B = (2, 8),
C = (9,−1).

If we try to solve the above problem in the third or fourth educational
level we have to face with complicated calculations as standard solutions
are:

• calculating the lengths of all sides of the triangle and then use
Heron’s formula or
• calculating the length of one side of the triangle and then the proper
height of a triangle (as a distance between the straight line and the
point).

The fastest method (possible even in the third educational level) is to
calculate coordinates of two vectors that have common beginning and then
use well known formula that lets compute the area of a triangle:

~AB = [1, 2], ~AC = [8,−7].

PABC = 1
2 ·

∣∣ ∣∣∣∣ 1 2
8 − 7

∣∣∣∣ ∣∣ = 11.5.

The other examples showing applications of vector calculus will be discussed
in the sections connected with point symmetry, homothetic transformation
and examples of tasks for students.

4. Isometries

Content ISOMETRY is rarely used in school mathematics. If the teach-
ers talk about isometry they explain to the students that it is a geometric
transformation that does not change the size and the shape of geometric
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figures. It is intuitively clear. Of course, isometry can change only the
location of the figures: it transforms them into another place or only re-
places the points (the whole figure stays in the same place). In addition,
only two isometric transformations are discussed: reflection symmetry and
point symmetry. There is no information about translation and rotation
that is puzzling since particularly translation is one of the most important
transformations that is used in the whole fourth educational level when the
teachers explain the transformations of the functions’ graphs. We think
that the definition of an isometry is not too difficult for students. If we
define the distance between the points X,Y as follows: d(X,Y ) =

∣∣∣ ~XY ∣∣∣,
we may define the formal but simple definition of an isometry.

4.1. Formal definition.

Definition 2. Geometric transformation f : π → π is called an isometry if
for the arbitrary points X,Y ∈ π we have the following equality:

d(f(X), f(Y )) = d(X,Y ),

i.e. the distance between two arbitrary points is equal to the distance between
their images.

From the above definition we can notice at once that the sizes of the
figures and their shapes cannot change because the distances between proper
points stay the same. We now can explain why in isometric transformations
we may only find the images of all vertices of a polygon in order to find an
image of the whole polygon. Moreover, we also have to discover only an
image of the centre of the circle in order to find an image of the whole circle
(because the radius stays the same) although above figures contain infinite
number of points. Of course, it is not possible for non-regular figures.

In school mathematics we should talk about the following examples of
isometric transformations:

(1) REFLECTION SYMMETRY;
(2) POINT SYMMETRY;
(3) TRANSLATION;
(4) ROTATION.
Above transformations will be discussed in the next subsections.

4.2. Reflection symmetry. If we introduce the distance between the point
X and straight line l as follows:

d(X, l) = inf{d(X,Y ) : Y ∈ l}
and the following definition:
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Definition 3. ~u ⊥ l if and only if for every two different points X,Y ∈ l
we have the condition: ~u ⊥ ~XY ,

then we can introduce the following definition.

Definition 4. Assume that l is any straight line in the plane π. Geometric
transformation f : π → π is called reflection symmetry towards straight line
l if for any point X ∈ π the following conditions are satisfied:

d(X, l) = d(f(X), l), (1)
−−−−→
Xf(X) ⊥ l. (2)

Let us notice that Definition 4. holds also for X ∈ l. In school practice
we modify Definition 4. in the following way:

Definition 5. Assume that l is any straight line in the plane π and point
X does not belong to l. Point X ′ is symmetric to point X towards l if it
satisfies the following conditions:

• Distances d(X, l) and d(X ′, l) are the same,
• Line segment XX ′ is perpendicular to the straight line l.

In addition we assume that if X ∈ l, then X ′ = X.

Let us notice that Definition 5. has also two conditions, we do not need
to add that points X, X ′ are located on both sides of the straight line l (as
it is added in many handbooks).

4.3. Point symmetry.

Definition 6. Assume that S is any point in the plane π. Geometric trans-
formation f : π → π is called the point symmetry towards point S if for the
arbitrary point X ∈ π the following condition is satisfied:

~XS =
−−−−→
Sf(X). (3)

The above definition holds also for X = S.
In school practice we modify Definition 6. in the following way:

Definition 7. Assume that S is an arbitrary point in the plane π and point
X is different from point S. Point X ′ is symmetric to point X towards
point S if it satisfies the following condition: Point S is the centre of the
line segment XX ′. In addition, if X = S then we assume X ′ = X.

Let us notice that above definition contains only one condition. We do
not have to talk about the same distances and we do not need to add that
points X,S,X ′ are located on the same straight line and points X and X ′

are different (as it is in many handbooks – then we have three conditions).
From Definition 7. we also conclude that vector calculus is the best way of
solving tasks connected with point symmetry.
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Example 4. Find an image of point A = (3, 4) in the symmetry towards
point S = (5, 6).

The image of point A can be denoted as A′ = (x, y). If we use the
definition of point symmetry and vector calculus we obtain:

~AS = [5− 3, 6− 4] = [2, 2],
~SA′ = [x− 5, y − 6].

Because the above vectors are equal we obtain: x− 5 = 2 and y− 6 = 2.
So x = 7 and y = 8. Then finally A′ = (7, 8).

On the base of definitions of reflection and point symmetry we can define
the concepts of symmetry axis and symmetry centre of a geometric figure.
Definition 8. Symmetry axis of a figure is a straight line towards which
the figure is symmetric to itself.

Geometric figures may have no symmetry axis, infinite number of sym-
metry axes or infinite number of symmetry axes.
Definition 9. Symmetry centre of a figure is the point towards which the
figure is symmetric to itself.

Geometric figures may have no symmetry centre, one symmetry centre
or infinite number of symmetry centres.

Let us notice that point symmetry towards point S is an identical trans-
formation like a U-turn around point S. The above description is the best
way to find symmetry centre of a figure. If there exists such a point S
around which U-turn gives the same figure (understood as the same set of
points) then point S is a symmetry centre of a figure.

The aforementioned concepts have nothing in common. There exist fig-
ures that have symmetry centre and have no symmetry axes and figures
that have symmetry axes and have no symmetry centre. In addition, we
notice that point symmetry can be understood as the superposition of two
reflection symmetries in which axes are perpendicular.

4.4. Translation.
Definition 10. Assume that ~u is an arbitrary vector in the plane (or space)
π. A geometric translation f : π → π is called the translation by a vector ~u
if for every point X ∈ π it satisfies the following condition:

−−−−→
Xf(X) = ~u. (4)

In school practice we modify the above definition the following:
Definition 11. Assume that ~u is an arbitrary vector in the plane (or space)
π. The image of a point X ∈ π in translation by a vector ~u is the point X ′

that satisfies the condition:
~XX ′ = ~u.



160 L. STĘPIEŃ, M. R. STĘPIEŃ, M. ZIÓŁKOWSKI

4.5. Rotation.

Definition 12. Assume that S is an arbitrary point in the plane π. The
rotation around point S of an angle α is a geometric transformation f of
the plane π that for every point X ∈ π satisfies the following conditions:

d(X,S) = d(f(X), S), (5)

|∠XSf(X)| = α. (6)

And in school practice:

Definition 13. Assume that S is an arbitrary point in the plane π. The
image of a point X ∈ π in rotation around point S of angle α is the point
X ′ that satisfies the following conditions:

d(X,S) = d(X ′, S),∣∣∠XSX ′∣∣ = α.

Remark. If we accept these definitions 12. and 13. we additionally have
to determine in which way we measure the angle (it is a directed angle). In
school practice we usually measure the angle anticlockwise.

5. Similarities

Similarities are colloquially understood as transformations that do not
change the shapes of the figures but they may change their sizes. Therefore
the difference between similarities and isometries is that similarities may
not only change the location of a figure but likewise decrease or increase it
in a given scale. Of course, similarities do not change the measures of the
angles and if the scale is equal to 1, then the similarity is an isometry. The
formal definition is not too difficult for students so we can introduce it in
the following way.

5.1. Formal definition.

Definition 14. Assume that k is an arbitrary positive number (k > 0).
Similarity of the scale k is a geometric transformation f : π → π that for
all points X,Y ∈ π satisfies the following equation:

d(f(X), f(Y )) = k · d(X,Y ).

Remark. If the figure F is similar to figure G in the scale k then G is
similar to F in the scale 1

k .
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5.2. Homothetic transformation. Homothetic transformations have not
been discussed in lower secondary schools for a long time. It is mainly
caused by eliminating vector calculus. It is alarming because homothetic
transformations are special cases of similarities that additionally keep the
line segments parallelism and they have many various practical applications
in various domains (physics, architecture). We also use homothetic transfor-
mations in everyday usage to constructional decreasing or increasing figures
in given scale. This is the formal definition.

Definition 15. Assume that k is an arbitrary non-zero number (k 6= 0).
Homothetic transformation with centre S and ratio k is a geometric trans-
formation f : π → π that for every point X ∈ π satisfies the following
condition: −−−−→

Sf(X) = k · ~SX. (7)

Definitions of similarity and homothetic transformation are completely
different. First of them is based on distances and the second is based on
vector calculus. So the next theorem seems to be very interesting for stu-
dents.

Theorem 1. Every homothetic transformation with scale k is a similarity
of scale |k|.

We present well known proof of this theorem (see [2]). Denote a homo-
thetic transformation of centre S and scale k by f . Let us assume that X,
Y are two arbitrary points in the plane (or space) π. Then we have the
following equalities, that prove the theorem:

d(f(X), f(Y )) =
∣∣∣ ~f(X)f(Y )

∣∣∣ = ∣∣∣ ~f(X)S + ~Sf(Y )
∣∣∣ = ∣∣∣− ~Sf(X) + ~Sf(Y )

∣∣∣ =
=

∣∣∣−k · ~SX + k · ~SY
∣∣∣ = ∣∣∣k · ~XS + k · ~SY

∣∣∣ = ∣∣∣k · ( ~XS + ~SY )
∣∣∣ = ∣∣∣k · ~XY ∣∣∣ =

= |k| ·
∣∣∣ ~XY ∣∣∣ = |k| · d(X,Y ).

6. Examples of tasks for students

In this section we want to present some tasks connected with geometric
transformations and their possible solutions. We want to draw your at-
tention to solutions in which we use elements of theory of isometries and
similarities as well as vector calculus. These solutions are much shorter,
more simple and more intelligible than traditional intuitive ones.

Task 1. Find the centre of line segment AB, if A = (3, 4), B = (11, 22).
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Solution: In the fourth educational level students know the formula for
the centre of line segment but it is a conclusion from vector calculus. We
can solve the above task as it follows:

Denote as S = (x, y) the centre of a line segment AB. Then we have:
~AS = [x− 3, y − 4], ~SB = [11− x, 22− y].

Of course ~AS = ~SB, so we obtain equations x−3 = 11−x and y−4 = 22−y.
Finally we obtain x = 7, y = 13 and S = (7, 13).

Task 2. Give the example of the figure that satisfies all the following con-
ditions:

a) it has infinite numbers of symmetry axes;
b) it has the symmetry centre that does not belong to this figure;
c) has positive and finite area.

Solution: It is a very interesting task because the only one type of figures
satisfies all conditions. These are circle rings.

Task 3. Assume that A = (1, 1), B = (3, 7). Find coordinates of the points
that divide the line segment AB to three equal parts.

Solution: Here the vector calculus is also the best tool. Let us denote by
S = (x, y) and T = (u, v) the searched points. We have

~AB = [2, 6], ~AS = [x− 1, y − 1],

~AS = 1
3
~AB =

[
2
3 , 2

]
.

So we obtain x = 12
3 , y = 3 and S =

(
12
3 , 3

)
. We can find the coordinates

of point T in the same way but we also can use the fact that point T is an
image of point S in the translation by the vector ~AS so we finally have:

T = (u, v) =
(
12
3 , 3

)
+
[
2
3 , 2

]
=

(
21
3 , 5

)
.

If we want to divide a line segment into more parts we proceed analogously.

Task 4. Find an image of point A = (2, 7) in the homothetic transformation
of centre S = (2, 11) and scale k = −1

2 .

Solution: Denote by A′ = (x, y) the image of a point A in the above
transformation. We have:

~SA′ = [x− 2, y − 11],

~SA = [0,−4].
By the definition 14. we get:

[x− 2, y − 11] = −1
2 · [0,−4] = [0, 2].

So we finally obtain x = 2, y = 13 and A′ = (2, 13).
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Task 5. Find the images of the rectangle ABCD:
a) in homothetic transformation with scale k = 2 and centre S located

inside the rectangle;
b) in homothetic transformation with scale k = −1

4 and centre S located
outside the rectangle;

c) in homothetic transformation with scale k = −3 and centre S being
any vertex of the rectangle.

Remark: It is a very important task. Finding the images of figures in ho-
mothetic transformations (especially if the scale is negative) makes possible
to notice very interesting facts. It can be easily shown (even on drawings)
that if the scale k of homothetic transformation is negative then this trans-
formation is a superposition of homothetic transformation of a positive scale
−k and point symmetry towards point S (or U-turn). Students are used to
positive scale. In homothetic transformation we also have negative scales
thus students may find it difficult to understand this fact.

Task 6. Which sentences are true?
a) If the figure has symmetry axis it also has the symmetry centre;
b) If the figure has more than one symmetry centre then it has the infinite

number of symmetry centres;
c) If the tetragon has a symmetry centre then it is a rhomboid;
d) Every regular polygon has the symmetry centre;
e) Symmetry centre of a figure always belongs to it;
f) If the triangle has more than one symmetry axis then it is regular;
g) Perpendicular bisector of a line segment is the only one symmetry axis

of a line segment;
h) Regular pentagon has the symmetry centre.

Remark: Some of those problems are very important. For example reg-
ular polygon has the symmetry centre if and only if the number of its sides
is even and every tetragon that has a symmetry centre is a rhomboid.

7. Final remarks

If we analyse the above considerations and examples of tasks we can
draw the conclusion that introduction the formal definitions of geometric
transformations in 3-rd educational level in proper and intelligible way is
possible and makes many geometric tasks easy. It is also significant that
formal base causes good comprehension of the above geometric concepts
hence a chance for easier work in the third and fourth educational level.
In addition, it should be emphasized that vector calculus is the best and
fastest tool to solve problems from analytic geometry.



164 L. STĘPIEŃ, M. R. STĘPIEŃ, M. ZIÓŁKOWSKI

References

[1] U. Trelińska, G. Treliński, Kształtowanie pojęć geometrycznych na etapie przeddefini-
cyjnym, MAT & MET, Kielce 1996.

[2] J. Knop, Geometria, Wydawnictwo AJD w Częstochowie, Częstochowa 2007.
[3] J. Jędrzejewski, A. Vizváry, M. Ziółkowski, Matematyka – Świat liczb – poradnik

dla nauczyciela gimnazjum klasa I, Res Polona, Łódź 2012.
[4] J. Jędrzejewski, A. Vizváry, M. Ziółkowski, Matematyka – Świat liczb – podręcznik

dla uczniów gimnazjum klasa I, Res Polona, Łódź 2012.
[5] J. Jędrzejewski, A. Vizváry, M. Ziółkowski, Matematyka – Świat liczb – zbiór zadań

dla uczniów gimnazjum klasa I, Res Polona, Łódź 2012.
[6] J. Jędrzejewski, A. Vizváry, M. Ziółkowski, Repetytorium z matematyki, Res Polona,

Łódź 2012.
[7] J. Jędrzejewski, A. Vizváry, M. Ziółkowski, Matematyka – Świat liczb – program

nauczania matematyki dla gimnazjum klasa I - III, Res Polona, Łódź 2012.
[8] http://www.bip.men.gov.pl/men_bip/akty_prawne/rozporzadzenie_20081223

_zal_4.pdf (2014, June 20th)
[9] http://www.oke.krakow.pl/inf/filedata/files/men_tom_6.pdf

(2014, June 20th)

Received: June 2014

Lidia Stępień
Jan Długosz University in Częstochowa,
Institute of Mathematics and Computer Science,
Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: l.stepien@ajd.czest.pl

Marcin Ryszard Stępień
Kielce University of Technology,
Chair of Mathematics,
Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
E-mail address: mstepien@tu.kielce.pl

Marcin Ziółkowski
Jan Długosz University in Częstochowa,
Institute of Mathematics and Computer Science,
Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: m.ziolkowski@ajd.czest.pl


