PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a novel photonic crystal 1.31/1.55 µm bi-band filter for near infrared application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel design of a double selective filter for integrated optics in two-dimensional photonic crystals operating at a wavelength of 1.31 and 1.55 µm is proposed in this paper. We focus particularly on filters transmission and selectivity enhancement. The two-dimensional photonic crystals filters are simulated by using a combination of three cascaded waveguides; these later are conceived by one missing row and with different rods radii for efficient filtering purpose. The properties of these photonic crystal structures are numerically investigated by using the two-dimensional finite-difference time-domain method and the numerical results are given for incident light wave having transverse electrical polarization. A final synthesized filter topology is presented and the maximum of transmission is found around 70% and 60% localized respectively near 1.31 and 1.55 µm wavelengths.
Czasopismo
Rocznik
Strony
341--348
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • STIC Laboratory, Faculty of Technology, University of Tlemcen, Algeria
autor
  • Telecommunication Laboratory, Faculty of Technology, University of Tlemcen, Algeria
autor
  • Telecommunication Laboratory, Faculty of Technology, University of Tlemcen, Algeria
autor
  • STIC Laboratory, Faculty of Technology, University of Tlemcen, Algeria
Bibliografia
  • [1] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, pp. 2059–2062.
  • [2] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489.
  • [3] KRAUSS T.F., DE LA RUE R.M., BRAND S., Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383, 1996, pp. 699–702.
  • [4] RUSSELL P.S.J., ATKIN D.M., BIRKS T.A., [In] Microcavities and Photonic Bandgaps: Physics and Application, [Eds.] J. Warrby, C. Weisbuch, Kluwer Academic, Dordrecht, The Netherlands, 1996, pp. 203–218.
  • [5] ATKIN D.M., RUSSELL P.ST.J., BIRKS T.A., ROBERTS P.J., Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure, Journal of Modern Optics 43(5), 1996, pp. 1035–1053.
  • [6] KANSKAR M., PADDON P., PACRADOUI V., MORIN R., BUSCH A., YOUNG J.F., JOHNSON S.R., MACKENZIE J., TIEDJE T., Observation of leaky slab modes in an air-bridged semiconductor waveguide with two-dimensional photonic lattice, Applied Physics Letters 70(11), 1997, pp. 1438–1440.
  • [7] JOHNSON S.G., FAN S., VILLENEUVE P.R., JOANNOPOULOS J.D., KOLODZIEJSKI L.A., Guided modes in photonic crystal slabs, Physical Review B 60(8), 1999, pp. 5751–5758.
  • [8] BIN JIANG, WENJUN ZHOU, WEI CHEN, ANJIN LIU, WANHUA ZHENG, Design of surface mode photonic crystal T-junction waveguide using coupled-mode theory, Journal of the Optical Society of America B 28(8), 2011, pp. 2038–2041.
  • [9] WRIGHT R.G., ZGOL M., ADEBIMPE D., KEENAN E., MULLIGAN R., KIRKLAND L.V., Multiresolution nanoscale sensor-based circuit board testing, [In] IEEE Autotestcon, 2005, IEEE, 2005, pp. 766–772.
  • [10] WAI LAM CHAN, MORAVEC M.L., BARANIUK R.G., MITTLEMAN D.M., Terahertz imaging with compressed sensing and phase retrieval, Optics Letters 33(9), 2008, pp. 974–976.
  • [11] KAWASE K., OGAWA Y., WATANABE Y., INOUE H., Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express 11(20), 2003, pp. 2549–2554.
  • [12] CAIHONG ZHANG, YUANYUAN WANG, JIAN CHEN, LIN KANG, WEIWEI XU, PEIHENG WU, Continuous -wave terahertz imaging system based on far-infrared laser source, 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, p. 426.
  • [13] IBRAHEEM A., KRUMBHOLZ N., MITTLEMAN D., KOCH M., Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters 18(1), 2008, pp. 67–69.
  • [14] LIU V., YANG JIAO, MILLER D.A.B., SHANHUI FAN, Design methodology for compact photonic-crystal-based wavelength division multiplexers, Optics Letters 36(4), 2011, pp. 591-593.
  • [15] BADAOUI H., FEHAM M., ABRI M., Double bends and Y-shaped splitter design for integrated optics, Progress In Electromagnetics Research Letters 28, 2012, pp. 129–138.
  • [16] BADAOUI H., FEHAM M., ABRI M., Optimized 1×4 Y shaped splitter for integrated optics, Australian Journal of Basic and Applied Sciences 5(10), 2011, pp. 482–488.
  • [17] MIN QIU, SWILLO M., Contra-directional coupling between two-dimensional photonic crystal waveguides, Photonics and Nanostructures – Fundamentals and Applications 1(1), 2003, pp. 23–30.
  • [18] STRASSER P., STARK G., ROBIN F., ERNI D., RAUSCHER K., WÜEST R., JÄCKEL H., Optimization of a 60° waveguide bend in InP-based 2D planar photonic crystals, Journal of the Optical Society of America B 25(1), 2008, pp. 67–73.
  • [19] LI S., ZHANG H.-W., WEN Q.-Y., SONG Y.-Q., LING W.-W., LI Y.-X., Improved amplitude–frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime, Applied Physics B 95(4), 2009, pp. 745–749.
  • [20] SINHA R.K., RAWAL S., Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer, Optical and Quantum Electronics 40(9), 2008, pp. 603–613.
  • [21] FEDAOUCHE AMAL, ABRI BADAOUI HADJIRA, ABRI MEHADJI, Ultra highly efficient 1 × 3 and 1 × 6 splitters for terahertz communication applications, IEEE Photonics Technology Letters 28(13), 2016, pp. 1434–1437.
  • [22] LALLAM F., BADAOUI H., ABRI M., Novel 1.31 μm narrow-band TE-mode filter design based on PBG shift in 2D photonic crystal slab, Photonics Letters of Poland 8(3), 2016, pp. 82–84. Bibliogr. 22 poz., rys.
  • [23] TAFLOVE A., Computational Electromagnetics: The Finite Difference Time Domain Method, Artech House, Boston, London, 1995.
  • [24] KOSHIBA M., TSUJI Y., SASAKI S., High-performance absorbing boundary conditions for photonic crystal waveguide simulations, IEEE Microwave and Wireless Components Letters 11(4), 2001, pp. 152–154.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaa5b73d-09b9-4be5-bf44-f6e01ab75d94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.