PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Undercut Anchor Diameter on the Rock Failure Cone Area in Pullout Tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical analysis was conducted using the FEM ABAQUS software to establish the impact of various undercut anchor diameters on the rock breakout cone formation. The central focus of the investigations was on the rock breakout prism, which tends to be approximated to a cone or a quadrilateral pyramid, including its characteristic parameter, the angle of failure cone . Assuming that the embedment depth and the undercut anchor head angle were constant for the considered range of anchor head diameters, it remains unclear, however, precisely how the anchor head diameter affects the value of the failure cone angle, and thus the surface area of the full breakout prism. This conclusion stands in confirmation of our former considerations regarding the impact of the anchor head angle on the size of the breakout surface. Furthermore, it is supported by the results obtained from the mechanical model simulation of the anchor-rock system, where the anchor head angle and the effective embedment depth were determined as significant factors affecting the assumed rock breakout failure. The underlying aspect of the reported investigation was to evaluate the effectiveness of the non-conventional rock breakout technology performed with an undercut anchor, whose primary factors were both the pullout force and the assumed volume of the rock cone.
Twórcy
autor
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-100 Gliwice, Poland
Bibliografia
  • 1. Committee 355 ACI. Evaluating the Performance of Post-installed Mechanical Anchors in Concrete (ACI 355.2-01) and Commentary (ACI 355.2 R-01): An ACI Standard. In American Concrete Institute; 2002.
  • 2. Eligehausen R. Connections between steel and concrete. Cachan: RILEM publications; 2001. (Proceedings).
  • 3. Eligenhausen R, Hofacker I, Lettow S. Fastening technique current status and future trends International Symposium on Connections between Steel and Concrete. Suttgart Sept. 2001;10.
  • 4. HILTI. Technisches Handbuch der Befestigungstechnik für Hoch- und Ingenieurbau. Ausgabe; HILTI: Schaan, Liechtenstein,. 2016.
  • 5. Fuchs W, Eligehausen R, Breen JE. Concrete capacity design (CCD) approach for fastening to concrete. Struct J. 1995;92(1):73–94.
  • 6. Valikhani A, Jaberi Jahromi A, Mantawy IM, Azizinamini A. Numerical Modelling of Concrete-to-UHPC Bond Strength. Materials. 2020 Mar 18;13(6):1379.
  • 7. Sucharda O. Identification of Fracture Mechanic Properties of Concrete and Analysis of Shear Capacity of Reinforced Concrete Beams without Transverse Reinforcement. Materials. 2020 Jun 20;13(12):2788.
  • 8. Cajka R, Marcalikova Z, Bilek V, Sucharda O. Numerical Modeling and Analysis of Concrete Slabs in Interaction with Subsoil. Sustainability. 2020 Nov 25;12(23):9868.
  • 9. Sawa M, Szala M, Henzler W. Innovative device for tensile strength testing of welded joints: 3d modelling, fem simulation and experimental validation of test rig – a case study. Appl Comput Sci. 2021 Sep 30;17(3):92–105.
  • 10. Falkowicz K. Composite plate analysis made in an unsymmetric configuartion. J Phys Conf Ser. 2021 Dec 1;2130(1):012014.
  • 11. Falkowicz K. Buckling numerical analysis of composite plate element in asymmetrical configuration. J Phys Conf Ser. 2021 Jan 1;1736(1):012029.
  • 12. Falkowicz K. Effect of cut-out radius for behaviour of symmetrically laminated plates. J Phys Conf Ser. 2021 Jan 1;1736(1):012030.
  • 13. Rogala M, Tuchowski W, Czarnecka-Komorowska D, Gawdzińska K. Analysis and assessment of aluminum and aluminum-ceramic foams structure. Adv Sci Technol Res J [Internet]. 2022;16(4). Available from: http://www.astrj.com/Analysis-and-assessment-of-aluminum-and-aluminum-ceramic-foams-structure,153028,0,2.html
  • 14. Wysmulski P, Debski H, Falkowicz K. Stability analysis of laminate profiles under eccentric load. Compos Struct. 2020 Apr;238:111944.
  • 15. Aliabadi MH. The boundary element method, volume 2: applications in solids and structures. Vol. 2. John Wiley & Sons; 2002.
  • 16. Cheng AHD, Cheng DT. Heritage and early history of the boundary element method. Eng Anal Bound Elem. 2005;29(3):268–302.
  • 17. Liu YJ, Mukherjee S, Nishimura N, Schanz M, Ye W, Sutradhar A, et al. Recent advances and emerging applications of the boundary element method. Appl Mech Rev. 2011;64(3).
  • 18. Szabelski J, Karpiński R, Machrowska A. Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials. 2022 Jan 18;15(3):721.
  • 19. Rogala M, Gajewski J, Głuchowski D. Crushing analysis of energy absorbing materials using artificial neural networks. J Phys Conf Ser. 2021 Jan;1736:012026.
  • 20. Gajewski J, Vališ D. Verification of the technical equipment degradation method using a hybrid reinforcement learning trees–artificial neural network system. Tribol Int. 2021 Jan;153:106618.
  • 21. Bokor B, Sharma A, Hofmann J. Experimental investigations on concrete cone failure of rectangular and non-rectangular anchor groups. Eng Struct. 2019 Jun;188:202–17.
  • 22. Hrubesova E, Mohyla M, Lahuta H, Bui T, Nguyen P. Experimental Analysis of Stresses in Subsoil below a Rectangular Fiber Concrete Slab †. Sustainability. 2018 Jun 28;10(7):2216.
  • 23. Jendzelovsky N, Tvrda K. Probabilistic Analysis of a Hospital Building Slab Foundation. Appl Sci. 2020 Nov 6;10(21):7887.
  • 24. Rogala M, Gajewski J, Gawdzińska K. Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. Compos Struct. 2022 Nov;299:116102.
  • 25. Gontarz J, Podgórski J, Siegmund M. Comparison of crack propagation analyses in a pull-out test. In Lublin, Poland; 2018 [cited 2022 Jan 20]. p. 130011. Available from: http://aip.scitation.org/doi/abs/10.1063/1.5019141
  • 26. Jonak J, Siegmund M. FEM 3D analysis of rockcone failure range during pull-out of undercut anchors. IOP Conf Ser Mater Sci Eng. 2019 Dec 19;710:012046.
  • 27. Jonak J, Karpiński R, Siegmund M, Machrowska A, Prostański D. Experimental Verification of Standard Recommendations for Estimating the Load-carrying Capacity of Undercut Anchors in Rock Material. Adv Sci Technol Res J [Internet]. 2021 Jan 11; Available from: http://www.astrj.com/Experimental-Verification-of-Standard-Recommendations-for-Estimating-the-Load-carrying,132279,0,2.html
  • 28. Robson M, Lahouar A, Al-Mansouri O, Pinoteau N, Piccinin R, Abate M, et al. Simplified analytical fracture mechanics model for the evaluation of concrete cone capacity of a single headed stud and experimental validation on anchors with various embedment depths. In: fib Symposium 2021: Concrete Structures: New Trends for Eco-Efficiency and Performance. 2021.
  • 29. Morgan ASE, Niwa J, Tanabe T aki. Size Effect Analysis for Pullout Strength under Various Boundary Conditions. J Eng Mech. 1999 Feb;125(2):165–73.
  • 30. Jonak J, Karpiński R, Siegmund M, Wójcik A, Jonak K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials. 2020 Oct 19;13(20):4657.
  • 31. Jonak J, Siegmund M, Karpiński R, Wójcik A. Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials. 2020 Mar 15;13(6):1332.
  • 32. Jonak J, Karpiński R, Wójcik A. Numerical analysis of undercut anchor effect on rock. J Phys Conf Ser. 2021 Dec 1;2130(1):012011.
  • 33. Ashour AF, Alqedra MA. Concrete breakout strength of single anchors in tension using neural networks. Adv Eng Softw. 2005 Feb;36(2):87–97.
  • 34. Jonak J, Karpiński R, Wójcik A, Siegmund M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials. 2021 Apr 8;14(8):1841.
  • 35. Jonak J, Karpiński R, Wójcik A, Siegmund M, Kalita M. Determining the Effect of Rock Strength Parameters on the Breakout Area Utilizing the New Design of the Undercut/Breakout Anchor. Materials. 2022 Jan 23;15(3):851.
  • 36. Karmokar T, Mohyeddin A, Lee J. Tensile behaviour of cast-in headed anchors in ambient-temperature cured geopolymer concrete. Eng Struct. 2022 Sep;266:114643.
  • 37. Jonak J, Karpiński R, Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys Conf Ser. 2021 Dec 1;2130(1):012012.
  • 38. Ozbolt J, Eligehausen R. Numerical analysis of headed studs embedded in large plain concrete blocks. 1990;
  • 39. Ožbolt J, Eligehausen R, Reinhardt HW. Size effect on the concrete cone pull-out load. In: Fracture Scaling. Springer; 1999. p. 391–404.
  • 40. Bennett MS. Prediction of the shear cone geometry surrounding headed anchor studs. 1979;
  • 41. Jonak J, Karpiński R, Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials. 2021 May 2;14(9):2371.
  • 42. Jonak J, Karpiński R, Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium–Part II. Materials. 2021 Jul 12;14(14):3880.
  • 43. Nilforoush R, Nilsson M, Elfgren L. Experimental Evaluation of Influence of Member Thickness, Anchor-Head Size, and Orthogonal Surface Reinforcement on the Tensile Capacity of Headed Anchors in Uncracked Concrete. J Struct Eng. 2018 Apr;144(4):04018012.
  • 44. Nilforoush R, Nilsson M, Elfgren L, Ožbolt J, Hofmann J, Eligehausen R. Tensile capacity of anchor bolts in uncracked concrete: Influence of member thickness and anchor’s head size. ACI Struct J. 2017;114(6):1519–30.
  • 45. Nilforoush R, Nilsson M, Elfgren L. Experimtal evaluation of tensile behaviour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal- and high-strength concrete. Eng Struct. 2017 Sep;147:195–206.
  • 46. A. Al- Ta S, A. Mohammed A. Tensile Strength of Short Headed Anchors Embedded in Steel Fibrous Concrete. AL-Rafdain Eng J AREJ. 2010 Oct 28;18(5):35–49.
  • 47. AlTaan SA, Mohammed AA, Al-Jaffal AA. Breakout Capacity of Headed Anchors in Steel Fibre Normal and High Strength Concrete. Asian J Appl Sci. 2012 Sep 15;5(7):485–96.
  • 48. Tóth M, Bokor B, Sharma A. Design recommendations for fasteners for use in steel fiber reinforced concrete. In: Proceedings of the fib Symposium 2019: Concrete – Innovations in Materials, Design and Structures [Internet]. 2019. p. 137–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066069683&partnerID=40&md5=b25a97edaf478caeb86dae608e12c91f
  • 49. Tóth M, Bokor B, Sharma A. Anchorage in steel fiber reinforced concrete – concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Eng Struct. 2019 Feb;181:60–75.
  • 50. Bokor B, Tóth M, Sharma A. Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates. Fibers. 2018 Dec 6;6(4):93.
  • 51. Siegmund M, Jonak J. Analysis of the process of loosening the rocks with different strength properties using the undercutting bolts. IOP Conf Ser Mater Sci Eng. 2019 Dec 1;679(1):012014.
  • 52. Siegmund M, Kalita M, Bałaga D, Kaczmarczyk K, Jonak J. Testing the rocks loosening process by undercutting anchors. Stud Geotech Mech. 2020 Jul 9;42(3):276–90.
  • 53. Gontarz J, Podgórski J, Jonak J, Kalita M, Siemund M. Comparison Between Numerical Analysis and Actual Results for a Pull-Out Test. [cited 2021 Mar 30]; Available from: http://et.ippt.pan.pl/index.php/et/article/view/1005
  • 54. Eligehausen R, Bouska P, Cervenka V, Pukl R. Size effect of the concrete cone failure load of anchor bolts. 1992;
  • 55. Yang KH, Ashour AF. Mechanism analysis for concrete breakout capacity of single anchors in tension. 2008;
  • 56. Zhao G. Tragverhalten von randfernen Kopfbolzenverankerungen bei Betonbruch. Dtsch Aussch Fuer Stahlbeton. 1995; (454).
  • 57. Piccinin R, Ballarini R, Cattaneo S. Linear Elastic Fracture Mechanics Pullout Analyses of Headed Anchors in Stressed Concrete. J Eng Mech. 2010 Jun;136(6): 761–8.
  • 58. Brincker R, Ulfkjær JP, Adamsen P, Langvad L, Toft R. Analytical model for hook anchor pull-out. In: Proceedings of the International Symposium on Anchors in Theory and Practice: Salzburg, Austria, 9-10 october 1995. CRC Press/Balkema; 1995. p. 3–15.
  • 59. Furche J. Zum Trag-und Verschiebungsverhalten von Kopfbolzen bei zentrischem Zug. IWB; 1994.
  • 60. Nilforoush R. A Refined Model for Predicting Concrete-Related Failure Load of Tension Loaded Cast-in-Place Headed Anchors in Uncracked Concrete. Nord Concr Res. 2019 Jun 1;60(1):105–29.
  • 61. Ožbolt J, Eligehausen R, Periškić G, Mayer U. 3D FE analysis of anchor bolts with large embedment depths. Eng Fract Mech. 2007 Jan;74(1–2):168–78.
  • 62. Gesoglu M, Özturan T, Özel M, Güneyisi E. Tensile behavior of post-installed anchors in plain and steel fiber-reinforced normal-and high-strength concretes. ACI Struct J. 2005;102(2):224.
  • 63. Farrow CB, Klingner RE. Tensile capacity of single anchors in concrete: Evaluation of existing formulas on an LRFD basis. Struct J. 1996;93(1):128–37.
  • 64. Jonak J. Kotwa podcinająco-odspajająca Nr zgłoszenia patentowego A 429560. Biuletyn Urzędu Patentowego: Wynalazki i Wzory użytkowe, 2019, 25; 41.
  • 65. Szkudlarek Z, Podgórski J, Jonak J. Numerical simulation of rock separation processby cutting prissing head. Maint Reliab. 2004;54–7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaa5550e-d6ff-4ef2-a494-ecb5c0d430a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.