PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody intensyfikacji procesów biooczyszczania powietrza prowadzonych w bioreaktorach strużkowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Methods of air purification intensification in the trickle-bed bioreactor
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano przeglądu najnowszych danych literaturowych dotyczących zagadnień związanych z procesami biodegradacji lotnych związków organicznych prowadzonych w bioreaktorach ze stałym złożem. Wskazano parametry mające wpływ na przebieg tych procesów i decydujące o efektywnej i stabilnej pracy instalacji. Przedstawiono rozwiązania technologiczne służące poprawie sprawności eliminacji zanieczyszczeń, szczególnie w odniesieniu do substancji hydrofobowych zanieczyszczających powietrze.
EN
The review of the latest literature data related to the biodegradation of volatile organic compounds and the removal of odors in trickle-bed bioreactors were performed. The basic parameters that affect the course of the process and determine the effective and stable operation of the installation were pointed out. Technological solutions to improve the efficiency of the bio-purification process, especially in relation to the hydrophobic substances polluting the air, were presented.
Rocznik
Tom
Strony
45--64
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Instytut Inżynierii Chemicznej PAN Gliwice, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej PAN Gliwice, ul. Bałtycka 5, 44-100 Gliwice
autor
  • Instytut Inżynierii Chemicznej PAN Gliwice, ul. Bałtycka 5, 44-100 Gliwice
autor
  • Instytut Inżynierii Chemicznej PAN Gliwice, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Borowicz K., Toksyczne powietrze; Srodowisko 23 (455)/2011.
  • [2] Dimitriades B., 1997. Photochemical smog and solvents. Metal. Finishing, 95, 55-59.
  • [3] Ma J., Xu X., Zhao C., Yan P,. 2012. A review of atmospheric chemistry research in China: photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci., 29, 1006-1026.
  • [4] Alinejad A., Zamir S.M., Shojaosadati S.A., 2017. Different strategies for transient-state operation of a biotrickling filter treating toluene vapor. Apel. Microbiol. Biotechnol., 101, 3451-3462. DOI: 10.1007/s00253-016-8075-6.
  • [5] Schmidt T., Anderson W.A., 2017. Biotrickling filtration of air contaminated with 1-Butanol. Environments, 4, 57. DOI: 10.3390/environments4030057.
  • [6] Moon C., Lee E.Y., Park S., 2010. Biodegradation of gas-phase styrene in a high- performance biotrickling filter using porous polyurethane foam as a packing medium. Biotechnol. Bioproc. Eng., 15, 512-519. DOI: 10.1007/s12257-009-3014-3.
  • [7] Wu H., Yin Z., Quan Y., Fang Y., Yin C, 2016. Removal of methyl acrylate by ceramic- packed biotrickling filter and their response to bacterial community. Bioresour. Technol., 209, 237-245. DOI: 10.1016/j.biortech.2016.03.009.
  • [8] Quan Y., Wu H., Yin Z., Fang Y., Yin C., 2017. Effect of static magnetic field on trichloroethylene removal in a biotrickling filter. Bioresour. Technol., 239, 7-16. DOI: 10.1016/j.biortech.2017.04.121.
  • [9] Schiavon M., Ragazzi M., Rada E.C., Torretta V., 2015. Air pollution control through biotrickling filters: a review considering operational aspects and expected performance. Crit. Rev. Biotechnol., 36, 1143-1155. DOI: 10.3109/07388551.2015.1100586.
  • [10] He Z., Zhou L., Li G., Zeng X., An T., Sheng G., Fu J., Bai Z., 2009. Comparative study of the eliminating of waste gas containing toluene in twin biotrickling filters packed with molecular sieve and polyurethane foam. J. Hazard. Mater., 167, 275-281. DOI: 10.1016/j.jhazmat.2008.12.116.
  • [11] Mirmohammadi M., Sotoudeheian S., Bayat R., 2017. Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance. Int. J. Environ. Sci. Technol., 14, 1615-1624. DOI: 10.1007/s13762-017-1273-7.
  • [12] Kennes C., Rene E.R., Veiga M.C., 2009. Bioprocess for air pollution control. J. Chem. Technol. Biotechnol., 84, 1419-1436. DOI: 10.1002/jctb.2216.
  • [13] Álvarez-Hornos F.J., Martínez-Soria V., Marzal P., Izquierdo M., Gabaldón C., 2017. Performance and feasibility of biotrickling filtration in the control of styrene industrial air emissions. Int. Biodeter. Biodegr., 119, 329-335. DOI:10.1016/j.ibiod.2016.10.016.
  • [14] Vikrant K., Kim K.-H., Szulejko J.E., Pandey S.K., Singh R.S., Giri B.S., Brown R. J. C., Lee S.-H., 2017. Bio-filters for the treatment of VOCs and odors – A review. AJAE, 11, 139- 152. DOI: 10.5572/ajae.2017.11.3.139.
  • [15] Saxena R. Rahul, 2016. Biological oxidation for treatment of VOCs–A review. Res. J. Chem. Sci., 6, 54-62.
  • [16] Mudliar S., Giri B., Padoley K., Satpute D., Dixit R., Bhatt P., Pandey R., Juwarkar A., Vaidya A., 2010. Bioreactors for treatment of VOCs and odours – A review. J Environ Manage., 91, 1039-1954. DOI: 10.1016/j.jenvman.2010.01.006.
  • [17] López L.R., Bezerra T, Mora M., Lafuente J., Gabriel D., 2016. Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization. J. Chem. Technol. Biotechnol., 91, 1031-1039. DOI: 10.1002/jctb.4676.
  • [18] Zamir S.M., Babatabar S., Shojaosadati S.A., 2015. Styrene vapor biodegradation in single- and two-liquid phase biotrickling filters using Ralstonia eutropha. Chem. Eng. J., 268, 21-27. DOI: 10.1016/j.cej.2015.01.040.
  • [19] Tu Y., Yang C., Cheng Y., Zeng G., Lu L., Wang L., 2015. Effect of saponins on n-hexane removal in biotrickling filters. Bioresour. Technol., 175, 231-238. DOI: 10.1016/j.biortech.2014.10.039.
  • [20] Pérez M.C., Álvarez-Hornos F.J., Portune K.J., Gabaldón C., 2015. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures. Appl. Microbiol. Biotechnol., 99, 19-32. DOI:10.1007/s00253-014- 5773-9.
  • [21] Song T., Yang C., Zeng G., Yu G., Xu Ch., 2011. Effect of surfactant on styrene removal from waste gas streams in biotrickling filters. J. Chem. Technol. Biotechnol., 87, 785-790. DOI: 10.1002/jctb.3717.
  • [22] San-Valero Tornero P., Gabaldón C., Penya-roja J.M. Quijano G. 2017. Enhanced styrene removal in a two-phase partitioning bioreactor operated as a biotrickling filter: Towards full- scale applications. Chem. Eng. J., 309, 588-595. DOI: 10.1016/j.cej.2016.10.054.
  • [23] Sun Z., Yang B., Wang L., Ding C., Li Z., 2017. Toluene-styrene secondary acclimation improved the styrene removal ability of biotrickling filter. Chem. Spec. Bioavailab., 29, 54- 59. DOI:10.1080/09542299.2017.1301219.
  • [24] Gaszczak A. 2015. Kinetyka mikrobiologicznego rozkładu wybranych lotnych zwiazków organicznych. Praca doktorska. IICH PAN, Gliwice.
  • [25] Szczyrba E., Szczotka A.,Bartelmus G. 2016. Modelling of aerobic biodegradation of phenol by Stenotrophomonas maltophilia KB2 strain. Proceedings of ECOpole 10(2), 533-543. DOI: 10.2429/proc.2016.10(1)057
  • [26] Yang C., Yu G., Zeng G., Yang H., Chen F., Jin C., 2011. Performance of biotrickling filters packed with structured or cubic polyurethane sponges for VOC removal. J. Environ. Sci., (China). 23, 1325-1333.
  • [27] Lebrero R., Rodríguez E., Estrada J.M., García-Encina P.A., Muñoz R., 2012. Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresource Technol., 109, 38-45. DOI: 10.1016/j.biortech.2012.01.052.
  • [28] Mirmohammadi M., Bayat R., Shirazi H.K., Sotoudeheian S., 2014. Effect of empty bed residence time on biotrickling filter performance: Case study-triethylamine. Int. J. Environ. Technol., 11, 183-190. DOI: 10.1007/s13762-013-0382-1.
  • [29] Runye Z., Christian K., Zhuowei C., Lichao L., Jianming Y., Jianmeng C., 2015. Styrene removal in a biotrickling filter and a combined UV - biotrickling filter: Steady- and transient- state performance and microbial analysis. Chem. Eng. J., 275, 168-178. DOI:10.1016/j.cej.2015.04.016.
  • [30] Sempere F., Martínez-Soria V., Palau J., Penya-Roja J.M., San-Valero P., Gabaldón C., 2011. Effects of nitrogen source and empty bed residence time on the removal of styrene gaseous emissions by biotrickling filtration. Bioprocess Biosyst. Eng., 34, 859-867. DOI:10.1007/s00449-011-0536-9.
  • [31] Dehghanzadeh R., Torkian A., Bina B., Poormoghaddas H.,Kalantary A. 2005. Biodegradation of styrene loaded waste gas stream using a compost-based biofilter. Chemosphere 60:434–439. DOI:
  • [32] Song J., Kinney K.A., 2000. Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: linking biofilm properties to bioreactor performance. Biotechnol. Bioeng., 68, 508-516. DOI:10.1002/(SICI)1097-0290(20000605)68:5<508::AID- BIT4>3.0.CO;2-P.
  • [33] He S., Wang L., Xu J., Yin N., 2012. Comparison of the purification performance and microbial community functional diversity in flow-directional-switching and unidirectional- flow biotrickling filters. J. Air Waste Manage., 62, 1203-1207. DOI: 10.1080/10962247.2012.700900.
  • [34] Wang L., He S., Xu J., Li J., Mao Z., 2013. Process performance of a biotrickling filter using a flow-directional-switching method. Clean - Soil Air Water, 41, 522-527.
  • [35] Rojo N., Gallastegui G., BaronaA., ElíasA., 2013. Reverse-flow strategy in biofilters treating CS2 emissions. Bioprocess Biosyst. Eng., 36, 389-397. DOI:10.1007/s00449-012-0795-0.
  • [36] Hassan A.A., Sorial G.A., 2008. n-Hexane biodegradation in trickle-bed air biofilters. Water Air Soil Pollut: Focus, 8, 287-296. DOI: 10.1007/s11267-007-9149-3.
  • [37] Salamanca D., Dobslaw D., Engesser K.-H., 2017. Removal of cyclohexane gaseous emissions using a biotrickling filter system. 176, 97-107. DOI: 10.1016/j.chemosphere.2017.02.078.
  • [38] Sempere F., Gabaldón C., Martínez-Soria V., Marzal P., Penya-Roja J.M., Álvarez-Hornos F.J., 2008. Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading. Chemosphere, 73, 1533-1539. DOI: 10.1016/j.chemosphere.2008.08.037.
  • [39] Hassan A.A., Sorial G.A., 2009. Biological treatment of benzene in a controlled trickle-bed air biofilter. Chemosphere, 75, 1315-1321. DOI: 10.1016/j.chemosphere.2009.03.008.
  • [40] Ren A., He H., Guo B., Lv X., 2014. Styrene degradation by biotrickling filters with mixed and single packings. Environ. Sci. Technol., 1, 373-379.
  • [41] Kim D., Cal Z., Sorial G.A., 2005. Evaluation of trickle-bed air biofilter performance under periodic stressed operating conditions as a function of styrene loading. J. Air Waste Manageme., 55, 200-209. DOI: 10.1080/10473289.2005.10464611.
  • [42] Yang Z., Liu J., Cao J., Sheng D., Cai T., Li J., 2017. A comparative study of pilot-scale bio- trickling filters with counter- and cross-current flow patterns in the treatment of emissions from chemical fibre wastewater treatment plant. Bioresour. Terchnol., 243, 78-84. DOI: 10.1016/j.biortech.2017.06.060
  • [43] Martínez-Soria V., Gabaldón C., Peneya-Roja J.M., Palau J., Álvarez-Hornos F.J., Sempere F., Sariano C., 2012. Performance of a pilot-scale biotrickling filter in controlling the volatile organic compound emissions in a furniture manufacturing facility. 59, 998-1006. DOI: 10.3155/1047-3289.59.8.998.
  • [44] Zehraoui A., Sorial G.A., 2015. Treatment of dynamic mixture of n-Hexane, Benzene, and Methanol and fungi community characterization in an integrated scheme of cyclic adsorption/desorption beds and trickle bed air biofilter. SWR., 8, 31-40.
  • [45] Akmirza I., Pascual C., Carvajal A., Pérez R., Muñoz R., Lebrero R., 2017. Anoxic biodegradation of BTEX in a biotrickling filter. Sci. Total Environ., 587-588, 457-465. DOI: 10.1016/j.scitotenv.2017.02.130.
  • [46] Cheng Y., He H., Yang C., Zeng G., Li X., Chen H., Yu G., 2016. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol. Adv., 34, 1091- 1102. DOI: 10.1016/j.biotechadv.2016.06.007.
  • [47] Ferdowsi M., Ramirez A.A., Jones J.P., Heitz M., 2017. Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review. Int. Biodeter. Biodegr., 119, 336- 348. DOI: 10.1016/j.ibiod.2016.10.015
  • [48] Sarzynski R., Kaleta J., Kolarczyk H., 2014. Improvement of vocs biofiltration in bioreactors containing partitioning phase with hydrophobic properties. Prace Nakowe IICH, 18, 73-93.
  • [49] Rene E.R. 2011. Styrene removal from polluted air in one and two-liquid phase biotrickling filter: steady and transient-state performance and pressure drop control.
  • [50] Muñoz R., Quijano G., Revah S., Two-phase partitioning bioreactors: towards a new generation of high-performance biological processes for VOC and CH4 abatement. Electronic Journal of Energy and Environment 2014, 2, 1.
  • [51] Bailón L., Nikolausz M., Kästner M., Veiga M.C., Kennes C., Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Res. 2009, 43, 11.
  • [52] Montes M., Veiga M.C., Kennes C., Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of a-pinene. Bioresource Technol. 2010, 101, 9493.
  • [53] Rocha-Rios J., Bordel S., Hernández S., Revah S., Methane degradation in two-phase partition bioreactors. Chem. Eng. J. 2009, 152, 289.
  • [54] Cheng Y., He H., Yang C., Zeng G., Li X., Chen H., Yu G., 2016. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol. Adv., 34, 1091- 1102. DOI: 10.1016/j.biotechadv.2016.06.007.
  • [55] Zhao, Lan, Shaobin Huang, and Zongmin Wei. 2014. A demonstration of biofiltration for voc removal in petrochemical industries. Environ. Sci.- Proc. Imp. 16, 1001. http://xlink.rsc.org/?DOI=c3em00524k.
  • [56] Balasubramanian P., Ligy Philip, S. Murty Bhallamudi. 2012. Biotrickling filtration of voc emissions from pharmaceutical industries. Chem. Eng. J., 209, 102-112. http://dx.doi.org/10.1016/j.cej.2012.04.020.
  • [57] Hu J., Zhang L., Chen J., Luo Y., Sun B., Chu G., 2016. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds Chem.Eng.J., 304, 757-765. DOI: 10.1016/j.cej.2016.06.078
  • [58] Li X.Z., Hauer B., Rosche B., 2013. Catalytic biofilms on structured packing for the production of glycolic acid. J. Microbiol. Biotechnol., 23, 195-204. DOI: 10.4014/jmb.1207.07057.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaa43e48-09d2-4592-a11f-4fd260385206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.