Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents new ensemble solutions, which can forecast the average level of particulate matters PM10 and PM2.5 with increased accuracy. The proposed network is composed of weak predictors integrated into a final expert system. The members of the ensemble are built based on deep multilayer perceptron and decision tree and use bagging and boosting principle in elaborating common decisions. The numerical experiments have been carried out for prediction of daily average pollution of PM10 and PM2.5 for the next day. The results of experiments have shown, that bagging and boosting ensembles employing these weak predictors improve greatly the quality of results. The mean absolute errors have been reduced by more than 30% in the case of PM10 and 20% in the case of PM2.5 in comparison to individually acting predictors.
Słowa kluczowe
Rocznik
Tom
Strony
1207--1215
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
autor
- Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
- Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] M. Martuzzi, F. Mitis, I. Iavarone, and M. Serinelli, “Health impact of PM10 and ozone in 13 Italian cities”, WHP report (2005).
- [2] https://www.epa.gov/criteria-air-pollutants, National Ambient Air Quality Standards (NAAQS, Air criteria Air Pollutants, US EPA. US Environmental Protection Agency, last updated on March 8 (2018).
- [3] N. Saliba, R. Massoud, F. Zereini, and C. Wiseman, Urban airborne particulate matter: origin, chemistry, fate and health impacts, environmental science and engineering, Springer-Verlag Berlin Heidelberg (2011).
- [4] J. Cao, J. Chow, F. Lee, and J. Watson, “Evolution of PM2.5 measurements and standards in the USA and future perspectives for China”, Aerosol Air Qual. Res. 13, 1197‒1211 (2013).
- [5] H Taheri Shahraiyni, and S Sodoudi, “Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies”, Atmosphere 7, 1‒24, doi:10.3390/atmos7020015 (2016).
- [6] G. Gennaro, L. Trizio, A. Gilio, J. Pey, N. Pérez, M. Cusack, A. Alastuey, and X. Querol, “Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean”, Sci. Total Environ. 463‒464, 875–883 (2013).
- [7] J. Anderson, J. Thundiyil, and A. Stolbach, “Clearing the Air: A review of the effects of particulate matter air pollution on human health”, American College of Medical Toxicology (2011).
- [8] M. Oprea, M. Popescu, E. Dragomir, and S. Mihalache, “Models of particulate matter concentration forecasting based on artificial neural networks”, in The 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing, Technology and Applications, Bucharest, Romania (2017).
- [9] R. Chandra and M. Zhang, “Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction”, Neurocomputing 86, 116‒123 (2012).
- [10] K. Siwek and S. Osowski, “Data mining methods for prediction of air pollution”, Int. J. Appl. Math. Comput. Sci. 26(2), 467–478 (2016).
- [11] C. Carnevale, E. De Angelis, G. Finzi, E. Turrini, and M. Volta, “An integrated forecasting system for air quality control”, in 18th European Control Conference (ECC), Napoli, Italy, 25‒28 (2019).
- [12] S. Osowski, and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517‒525 (2019).
- [13] X. Liang, T. Zou, B. Guo, S. Li, H. Zhang, S. Zhang, H. Huang, and S. X. Chen. “Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating”, Proc. R. Soc. A-Math. Phys. Eng. Sci. 471, 20150257 (2015), https://doi.org/10.1098/rspa.2015.0257.
- [14] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley, New York ( 2004).
- [15] Zhi-Hua Zhou, Ensemble Methods Foundations and Algorithms, Chapman and Hall, London (2012).
- [16] I. Guyon., and A. Elisseeff, “An introduction to variable and feature selection”, J. Mach. Learn. Res. 3, 1157‒1182 (2003).
- [17] P.N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining, Pearson Education Inc., Boston (2006).
- [18] Matlab user manual, MathWorks, Natick, USA, (2016).
- [19] S. Haykin, Neural networks, a comprehensive foundation, Macmillan College Publishing Company, New York (2000).
- [20] L. Breiman, “Random forests”, Mach. Learn. 45(11), 5–32 (2001).
- [21] R. Schapire and Y. Freund, Boosting: Foundations and Algorithms, The MIT Press (2012).
- [22] H. Drucker, “Improving regressors using boosting techniques”, in Proceedings of the 14 International Conference on Machine Learning, 107‒115, Morgan Kaufmann Publishers, San Francisco (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaa267a8-ec13-4550-94a0-5b6bf5d60f0f