Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the impact of anti-fire paint with different thicknesses of 100, 200, and 400 microns on the post-fire behavior of cylindrical tanks under external pressure. For this purpose, we investigate the buckling modes of the cylindrical tank specimens after they are exposed to fire. Different fire temperatures of 300, 450, and 600 ℃ were investigated. A total of 22 specimens were fabricated in the laboratory. The specimens have been divided into three groups, the first group without any anti-fire, the second group include the anti-fire paint on their inner skin and the last group have the anti-fire paint both on inner and outer faces of the tank. In the second part of the study, to determine the effects of anti-fire paint numerically, the finite element models were created in Abaqus software. Numerical models were verified by Experimental data, with an error rate at initial buckling 5.4%, overall buckling 6.17% and collapse 7.88%. The results showed that the samples with 100-micron-thick anti-fire paint on both outer and inner surfaces did not show any significant difference compared to unpainted specimens under buckling load. However, the cylindrical specimen with 200-micron-thick anti-fire paint on both outer and inner surfaces was found to be fire resistant up to 450 ℃ and displayed similar behaviors with the perfect one (unpainted and not exposed to fire). Moreover, the specimens with 400-micron-thick anti-fire paint were also found to be resistant to fire up to 450°; however, the collapse loads of these specimens were greater than the overall buckling load of the specimens with 200-micron thick anti-fire paint. Numerical and experimental results show a good agreement, the stress distribution and plastic equivalent strain values were parallel with the buckling load capacity of the specimen. As a result, the thickness of the anti-fire paint directly affects the fire resistance of cylinder steel, and with a validated finite element model, it is possible to predict the paint thickness that can withstand specific fire temperatures in large shell structures.
Czasopismo
Rocznik
Tom
Strony
art. no. e125, 2024
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Engineering and Architecture, Civil Engineering Department, Erzurum Technical University, 25050 Erzurum, Turkey
- Ataturk University, Atateknokent B Blok. İc kapı No:101 Maali Celik Yakutiye, Erzurum, Turkey3 Department of Civil Engineering, Sakarya University, 54050 Serdivan, Sakarya, Turkey
autor
- Department of Civil Engineering, Sakarya University, 54050 Serdivan, Sakarya, Turkey
autor
- Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
- Dynamica Muhendislik Co., 61010 Trabzon, Turkey
autor
- Department of Civil Engineering, Sakarya University, 54050 Serdivan, Sakarya, Turkey
- Mctp Pipe Technologies, Azmimilli Mah. Teslim Sok, 81020 Duzce, Turkey
autor
- Department of Civil Engineering, Ataturk University, 25030 Erzurum, Turkey
- ACADEMY Sağlık, Hiz. Muh. İnş. Taah. Elekt. Yay. Tic. San. Ltd. Şti, Ataturk University, Atateknokent B Blok, Erzurum, Turkey
Bibliografia
- 1. Casal J, Darbra RM. Analysis of past accidents and relevant case-histories. In: Domino effects in the process industries. Elsevier; 2013. p. 12-29. https://doi.org/10.1016/B978-0-444-54323-3.00002-6.
- 2. Salahshour S, Fallah F. Elastic collapse of thin long cylindrical shells under external pressure. Thin-Walled Struct. 2018;124:81-7. https://doi.org/10.1016/j.tws.2017.11.058.
- 3. Ning X, Pellegrino S. Imperfection-insensitive axially loaded thin cylindrical shells. Int J Solids Struct. 2015;62:39-51. https://doi.org/10.1016/j.ijsolstr.2014.12.030.
- 4. Sofiyev AH, Kuruoglu N. Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos B Eng. 2013;45(1):1133-42. https://doi.org/10.1016/j.compositesb.2012.09.046.
- 5. Sun J, Xu X, Lim CW. Accurate symplectic space solutions for thermal buckling of functionally graded cylindrical shells. Compos B Eng. 2013;55:208-14. https://doi.org/10.1016/j.compositesb.2013.06.028.
- 6. Chikode S, Raykar N. Investigation of reduction in buckling capacity of cylindrical shells under external pressure due to partially cut ring stiffeners. J Pressure Vessel Technol. 2017. https://doi.org/10.1016/j.compositesb.2013.06.028.
- 7. Pantousa D, Godoy LA. On the mechanics of thermal buckling of oil storage tanks. Thin-Walled Struct. 2019;145: 106432. https://doi.org/10.1016/j.tws.2019.106432.
- 8. Lou GB, Wang CH, Jiang J, Jiang YQ, Wang LW, Li GQ. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires. Fire Saf J. 2018;98:48-62. https://doi.org/10.1016/j.firesaf.2018.04.006.
- 9. Shi G, Wang S, Rong C. Experimental investigation into mechanical properties of Q345 steel after fire. J Constr Steel Res. 2022;199: 107582. https://doi.org/10.1016/j.jcsr.2022.107582.
- 10. Tonicello E, Desanghere S, Vassart O, Franssen JM (2012) Fire analysis of a new steel bridge. In: Proceedings of the 7th International. https://doi.org/10.3929/ethz-a-0070501097.
- 11. Piroglu F, Baydogan M, Ozakgul K. An experimental study on fire damage of structural steel members in an industrial building. Eng Fail Anal. 2017;80:341. https://doi.org/10.1016/j.engfailanal.2017.06.051.
- 12. Qin C, Mahmoud H. Collapse performance of composite steel frames underfire. Eng Struct. 2019;183:662-76. https://doi.org/10.1016/j.engstruct.2019.01.032.
- 13. Suwondo R, Cunningham L, Gillie M, Bailey C. Progressive collapse analysis of composite steel frames subject to fire following earthquake. Fire Saf J. 2019;103:49-58. https://doi.org/10.1016/j.firesaf.2018.12.007.
- 14. El-Heweity MM. Behavior of portal frames of steel hollow sections exposed to fire. Alex Eng J. 2012;51:95-107. https://doi.org/10.1016/j.aej.2012.06.004.
- 15. Rackauskaite E, Kotsovinos P, Jeffers A, Rein G. Computational analysis of thermal and structural failure criteria of a multi-storey steel frame exposed to fire. Eng Struct. 2019;180:524-43. https://doi.org/10.1016/j.engstruct.2018.11.026.
- 16. Ricardo AS, de Santana Gomes WJ. Structural reliability methods applied in analysis of steel elements subjected to fire. J Eng Mech. 2021;147(12):04021108. https://doi.org/10.1016/j.jcsr.2022.107512.
- 17. Durif S, Bouchaïr A, Vassart O. Validation of an analytical model for curved and tapered cellular beams at normal and fire conditions. Periodica Polytechnica Civil Engineering. 2013;57(1):83-95. https://doi.org/10.3311/PPci.2144.
- 18. EN 13381-8. Test Methods for Determining the Contribution to the Fire Resistance of Structural Members Part 8: Applied Reactive Protection to Steel Members, European Committee for Standardization, Brussels, 2013.
- 19. Vandersall HL. Intumescent coating system, their development and chemistry. J Fire Flamm. 1971;2:97-140.
- 20. Lucherini A, Giuliani L, Jomaas G. Experimental study of the performance of intumescent coatings exposed to standard and non-standard fire conditions. Fire Saf J. 2018;95:42-50. https://doi.org/10.1016/j.firesaf.2017.10.004.
- 21. De Silva D, Bilotta A, Nigro E. Experimental investigation on steel elements protected with intumescent coating. Constr Build Mater. 2019;205:232-44. https://doi.org/10.1016/j.conbuildmat.2019.01.223.
- 22. Jimenez M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol. 2006;201(3-4):979-87. https://doi.org/10.1016/j.surfcoat.2006.01.026.
- 23. Eurocode 1: Actions on Structures-Part 1-2: General actions - actions on structures exposed to fire, The European Standard EN 1991-1-2:2002 has the status of a British Standard.
- 24. Jawad MH. Theory and design of plate and shell structures. Chapman & Hall; 1994.
- 25. Ventsel E, Krauthammer T, Carrera EJAMR. Thin plates and shells: theory, analysis, and applications. Appl Mech Rev. 2002. https://doi.org/10.1115/1.1483356.
- 26. Ross CTF. A proposed design chart to predict the inelastic buckling pressures for conical shells under uniform external pressure. Mar Technol. 2007;44(2):77-81.
- 27. BSI. Specification for Unfired Fusion Welded Pressure Vessels, 4th ed. British Standards Institution, UK PD5500, 2009.
- 28. ECCS. Buckling of Steel Shells European Recoendations, Belgium. ECCSCECM-EKS, European Convention for Constructional Steelwork, 1988.
- 29. Aydin AC, Yaman Z, Ağcakoca E, Kılıc M, Maali M, Dizaji AA. CFRP effect on the buckling behavior of dented cylindrical shells. Int J Steel Struct. 2019. https://doi.org/10.1007/s13296-019-00294-4.
- 30. Taraghi P, Showkati H. Investigation of the buckling behavior of thin-walled conical steel shells subjected to a uniform external pressure. Iran J Sci Technol-Trans Civ Eng. 2019;43(4):635-48. https://doi.org/10.1007/s40996-018-0213-1.
- 31. Taraghi P, Showkati H, Firouzsalari SE. The performance of steel conical shells reinforced with CFRP laminates subjected to uniform external pressure. Constr Build Mater. 2019;214:484-96. https://doi.org/10.1016/j.conbuildmat.2019.04.015.
- 32. Ghaemdoust MR, Yousefi O, Narmashiri K, Karimian M. Numerical and experimental study on deficient short steel tubes strengthened with CFRP under compression. Periodica Polytechnica Civil Engineering. 2019;63(3):908-17. https://doi.org/10.3311/PPci.13280.
- 33. Singer J. Buckling experiments on shells - a review of recent developments. Solid Mech Arch. 1982;7:213-313.
- 34. CEN. EN 1993-1-2, Eurocode 3: design of steel structures - part 1-2: general rules structural fire design. Brussels: CEN; 2008.
- 35. Maali M, Kılıç M, Yaman Z, Ağcakoca E, Aydın AC. Buckling and post-buckling behavior of various dented cylindrical shells using CFRP strips subjected to uniform external pressure: comparison of theoretical and experimental data. Thin Walled Struct. 2019;137:29-39. https://doi.org/10.1016/j.tws.2018.12.042.
- 36. Macit F. Effects of anti-fire paint on the post-fire behavior of the cylindrical shells under vacuum pressure. Sakarya University, Master Thesis, Turkey, 2020.
- 37. ABAQUS/CAE v6.12 Programme. Dassault Systemes Simulia Corp. Providence, RI, USA, 2017.
- 38. ABAQUS Analysis User’s Manual (2008), version 6.8.
- 39. Cuong BM, Tounsi A, Van Thom D, Van NTH, Van Minh P. Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums. Comput Concr. 2024;33(1):91-102.
- 40. Bentrar H, Chorfi SM, Belalia SA, Tounsi A, Ghazwani MH, Alnujaie A. Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method. Struct Eng Mech. 2023;88(6):551.
- 41. Tien DM, Van-Thom D, Hai-Van NT, Tounsi A, Van-Minh P, Mai DN. Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account. Comput Concrete. 2023;32(6):553-65.
- 42. Mesbah A, Belabed Z, Amara K, Tounsi A, Bousahla AA, Bourada F. Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams. Struct Eng Mech. 2023;86(3):291-309.
- 43. Xia L, Wang R, Chen G, Asemi K, Tounsi A. The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity. Adv Nano Res. 2023;14(4):375-89.
- 44. Kumar Y, Gupta A, Tounsi A. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv Nano Res. 2021;11(1):001.
- 45. Katiyar V, Gupta A, Tounsi A. Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D FGPs) with partial supports by using FEM. Steel Compos Struct. 2022;45(5):621-40.
- 46. Van Vinh P, Van Chinh N, Tounsi A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A/Solids. 2022;96: 104743.
- 47. Cuong-Le T, Nguyen KD, Le-Minh H, Phan-Vu P, Nguyen-Trong P, Tounsi A. Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv Nano Res. 2022;12(5):441.
- 48. Fazlalipour N, Showkati H, Firouzsalari SE. Buckling behaviour of cylindrical shells with stepwise walthickness subjected to combined axial compression and external pressure. Thin-Walled Struct. 2021;167: 108195.
- 49. Fatemi SM, Showkati H, Maali M. Experiments on imperfect cylindrical shells under uniform external pressure. Thin Walled Struct. 2013;65:14-25. https://doi.org/10.1016/j.tws.2013.01.004.
- 50. Niloufari A, Showkati H, Maali M, Mahdi-Fatemi S. Experimental investigation on the effect of geometric imperfections on the buckling and post-buckling behavior of steel tanks under hydrostatic pressure. Thin Walled Struct. 2014;74:59-69. https://doi.org/10.1016/j.tws.2013.09.005.
- 51. Balogh T, Vigh LG. Optimal fire design of steel tapered portal frames. Periodica Polytechnica Civil Engineering. 2016. https://doi.org/10.3311/PPci.8985.
- 52. Karaton M, Aksoy HS. Seismic damage assessment of an 891 years old historic masonry mosque. Periodica Polytechnica Civil Engineering. 2018;62(1):126. https://doi.org/10.3311/PPci.10270.
- 53. Maali M, Aydin AC, Showkati H, Sağıroğlu M, Kilic M. The effect of longitudinal imperfections on thin-walled conical shells. J Build Eng. 2018;20:424-41.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaa1125d-bafa-4ef3-8471-47274a4d4c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.