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1. Introduction

In recent years, important developments have been presented in 
the area of reliability inference of products and systems based on deg-
radation models. Such models are important tools to obtain reliability 
information when few failure data is available [11], and consists in 
analyzing the gradual deterioration in performance of a performance 
characteristic (PC), also known as degradation process, in terms of 
the accumulated damage over time [27]. For some products, a failure 
would be defined at a specified critical level of degradation, which 
means that the product may not stop working completely as in the 
case of hard failures, but be defined when the cumulative degradation 
path crosses the critical level of degradation; such failures are known 
as soft failures. In general, if a failure can be defined in terms of a 
specified critical level of degradation it is possible to obtain a reliabil-
ity assessment based on degradation process models [12]. Based on 

this, a modeling approach for degradation processes may consist in re-
lating the degradation over time with a continuous stochastic process 
such that it is possible to describe the failure generating mechanisms. 

For certain PC, the desirable properties that a model must have 
to describe its degradation process are that the degradation process 
should always be positive and strictly increasing. In this paper, the 
gamma process is considered as a model to govern the degradation 
process of certain PC, given the characteristics that its increments are 
independent and non-negative having a gamma distribution that re-
sults in an always positive, strictly increasing stochastic process. As 
performance can only decrease over time, this is why it is considered 
to be suitable to model wear, crack growth, corrosion, consumption, 
fatigue, erosion, or any PC [16]. Some important applications of the 
gamma process in the reliability assessment of products can be found 
in Bagdonavicius and Nikulin [2], Park and Padgett [22], and Bag-
donavicius and Nikulin [3]. 
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 In this paper, a reliability modeling approach for products with two performance characteristics related to two degradation 
processes is developed. The joint modeling of such processes is performed by using a copula function in order to consider the 
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W niniejszym artykule opracowano sposób modelowania niezawodności produktów posiadających dwa parametry użytkowe zwią-
zane z dwoma procesami degradacji. Procesy takie można modelować łącznie wykorzystując funkcję kopuły, która pozwala na 
analizę struktury zależności między procesami degradacji. Proponowane podejście zakłada, że na stochastyczne zachowanie 
każdego z parametrów użytkowych wpływają różne efekty losowe. Przy takim założeniu, należy wziąć pod uwagę różne modele 
dwuwymiarowe, w których rozkłady brzegowe są brzegowymi procesami gamma z niejednorodnymi efektami losowymi. Jako że 
efekty losowe mogą być odmienne dla różnych parametrów użytkowych, zaproponowano różne modyfikacje struktury parametrów 
procesu gamma, takie, że efekty losowe wpływają zarówno na dryf jak i dyfuzję, tylko na dryf, lub tylko na dyfuzję procesów 
brzegowych gamma. Wnioskowanie statystyczne dla wspólnych modeli dwuwymiarowych przeprowadzono metodą Bayesa. Uzy-
skane wyniki pokazują, że dwuwymiarowy model z niejednorodnymi efektami losowymi ma nieznaczną przewagę nad pozostałymi 
zaproponowanymi modelami. Oznacza to, że dwuwymiarowe modele procesu gamma z niejednorodnymi efektami losowymi mogą 
stanowić lepszy sposób modelowania wielowymiarowych danych degradacyjnych, tym samym umożliwiając lepszą ocenę nieza-
wodności badanego produktu.

Słowa kluczowe: degradacja, proces gamma, efekt losowy, efekt niejednorodny, funkcja kopuły.
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However, in most of the degradation processes, it can be found 
that the degradation of a product’s characteristic is affected by differ-
ent sources of variation. Which implies that the degradation in a prod-
uct population has a large variation due to some unobservable effects. 
These effects are described by the variation in the degradation incre-
ments over time for every specific product’s degradation path and the 
different behaviors of the degradation paths for every product, i.e., 
the degradation rate. The simple gamma process is unable to capture 
such variations. However, these variations have been well modeled 
by incorporating random effects into the gamma process. Lawless and 
Crowder [10] considered that the scale parameter of the gamma proc-
ess have different realizations among products, and let the parameter 
to be random following a gamma distribution. Different applications 
of this model can be found in Tsai et al. [29], Wang et al. [30], Wang 
[32], and Pulcini [25]. In the classical random effects gamma process 
model it can be noted that both the mean and variance of the process 
are affected by the random effect parameter, which results in a degra-
dation process with random drift and random diffusion. Nevertheless, 
for some products it may be the case that the degradation paths are just 
characterized by a random drift or just a random diffusion.

Another important aspect to consider is that the functionality of 
a product may be related to multiple PC. In such cases, it is impor-
tant to consider multivariate models to obtain robust reliability esti-
mates. Some important applications of multivariate gamma processes 
in reliability analysis have been presented by Hao et al. [9], Pan and 
Balakrishnan [18], Pan and Balakrishnan [19], Pan et al. [20], Pan et 
al. [21], Park and Padgett [23], Sari et al. [26], Wang et al. [31], and 
Zhou et al. [36]. In most of the multivariate degradation models, it is 
considered that each of the multiple PC are governed by a univariate 
stochastic gamma process and then the joint model is obtained via 
copula functions. By modeling with copula functions, the independ-
ence assumption is not assumed. Indeed it can be tested by consider-
ing the association parameter of the copula function [8], which makes 
the copula modeling approach quite attractive. In addition, most of the 
developed works do not consider random effects in the modeling [18-
21, 26, 36]. Random effects are an important aspect to consider in the 
degradation modeling of almost any product under study, given that 
most of the time there is a substantial subject-to-subject variability 
among the degradation processes of different individuals [33]. Which, 
accounts to describe the individual variability that determines the het-
erogeneity among the degradation paths of different product units, 
also known as individual variability [35].

Considering that a product may consist in multiple PC and that 
random effects affect in different ways the multiple PC. It result im-
portant to develop multivariate models with heterogeneous random 
effects. Furthermore, each PC may experience different sources of 
variation, which means that the random effects may be characterized 
in different ways in the degradation paths. For example, the degrada-
tion paths of a PC 1 may be characterized by a large variation of the 
degradation rate and a low variation of the within degradation incre-
ments, and the degradation paths of a second PC may be character-
ized by both a large variation of the degradation rate and the within 
degradation increments. It is important to consider such scenarios 
when dealing with the degradation modeling. The importance relies 
on describing the heterogeneous behavior of the multiple PC degrada-
tion in terms of their best fitting stochastic gamma process with ran-
dom effects to obtain robust reliability assessments. Hao et al. [9] and 
Wang et al. [31] developed bivariate gamma processes with random 
effects, however they only considered the classical gamma process 
with random effects as marginal distributions. The classical gamma 
process with random effects consider that the scale parameter is ran-
dom, which means that the mean and variance of the gamma process 
are affected by the random effects parameter. This results in processes 
with random drift and random diffusion. In this paper, we model the 
degradation processes of two PC considering an Archimedean copula 

function and different gamma processes with heterogeneous random 
effects as marginal distributions. This, by proposing different modi-
fications of the structure of the parameters of the marginal gamma 
processes, such that a random drift and a random diffusion gamma 
process models are obtained. A time-scale monotone transformation 
is considered to assure that degradation is a linear function of time 
[34]. As the joint distributions are complex, the estimation of the pa-
rameters is performed via Gibbs sampling and Markov chain Monte 
Carlo (MCMC) implemented in OpenBUGS. The models are illus-
trated with the reliability assessment of a case study that consists of 
crack propagation data of two terminals of an electronic device.

The rest of the paper is organized as follows. Section 2 presents 
the simple gamma process and the bivariate modeling based on two 
PC. In Section 3, the different gamma processes with random effects 
for two PC are introduced. Section 4 presents the bivariate modeling 
based on the Frank copula function, and the heterogeneous random 
effects models are defined. Section 5 deals with inference method for 
the bivariate degradation model with random effects. Section 6 ad-
dresses the implementation of the proposed models in a fatigue-crack 
growth dataset. Finally, in Section 7 some concluding remarks are 
provided.

2. Gamma process for two performance characteris-
tics

Considering a non-negative-valued process {Z(t),t>0}, where Z(t) 
represents the measured degradation for an individual unit at time t, then 
the gamma process has the following properties: (a) Z(t+∆t)−Z(t)=∆Z(t) 
follows a gamma distribution Ga(v[τ(t+∆t)−τ(t) ],u), and (b) Z(t) has 
independent increments, Z(t4 )−Z(t3 ) and Z(t2 )−Z(t1) are independent 
∀t1<t2<t3<t4.

Now, let v(τ(t)) be a non-negative shape parameter with a time 
scale transformation in the form of τ(t,γ)= tγ, thus ∆τ(t)=τ(t+∆t)−τ(t),  
t≥0, v(0)≡0, and u>0 be a scale parameter. Then, Z(t),t>0 is governed 
by a gamma process with the parameters described above. Thus, the 
gamma process Ga(v(∆τ(t)),u) describes the degradation level of 
some characteristic at time t, and has a mean v(∆τ(t))/u and variance 
v(∆τ(t)) ⁄ u2 , the probability density function (PDF) of ∆Z(t) is given 
by:
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Considering that the degradation process of a certain product 
is governed by a gamma process, a failure of the product is said to 
have occurred the moment when the degradation path Z(t) crosses 
a critical level of degradation ω. Known also as the first-passage 
time. Thus, the first-passage time is defined as Tω= inf{tω:Z(t)≥ω}. 
The cumulative distribution function (CDF) of tω con be obtained as 
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where Γ(v(τ(tω )),ωu) is the upper incomplete gamma function 

defined by Γ v t u e d
u
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ω
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Now consider that a product has two PC and that are marginal-
ly governed by a gamma process with a time-scale transformation. 
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Also considering a degradation test (DT) with the next character-
istics: N units are tested and M measurements for all the units are 
observed up to the termination time T, which results in degrada-
tion measurements Zik(tj ) of the ith unit at the corresponding time 
tj, i=1,2,… ,N, j=1,2 ,…,M, and k=1,2 PC. Then, the degradation data 
can be presented as follows:
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According to the independent increment property of the gamma 
process, and ∆ ∆Z t Z t Z t t tik j ik j ik j j k( ) = ( ) − ( ) = ( ) =−1 0 0, , ,τ γ   
− ( ) = −− −τ γ γ γt t tj k j j

k k
1 1, , , for i=1,2,…,N,j=1,2,…,M, and k=1,2 PC. 

Thus, it is possible to obtain independent random variables 
∆Zik (tj ) ~ Ga(vk (∆τ(tj,γk )),uk ), with the next PDF and CDF:
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is the lower incomplete gamma function, i=1,2,…,N,j=1,2,…,M, and 
k=1,2 PC. If ωk is the critical degradation level of each PC for k=1,2. 

Then the CDF of 
k

tω  can be obtained from (2) as P(Zik (tj )≥ωk).

3. Gamma processes with random effects

Considering that the sampled product under study may experience 
different sources of variation during its operation, it results appropri-
ate to incorporate product-to-product variability in the modeling of 
the degradation processes. In this case, it is assumed that γk and vk are 
fixed parameters that are common to all products. The random effects 
are introduced by letting that uk be a random parameter that follows a 
gamma distribution representing the heterogeneity among different 
products. Considering that, a product has two performance character-
istics whose degradation have been observed during a DT with degra-
dation measurements Zik(tj) of the ith unit at the corresponding time tj, 
i=1,2,…,N,j=1,2,…,M, and k=1,2 PC. Then, the gamma process with 
random effects (RE) for k=1,2 can be written as ∆Zik (tj )~Ga(vk 
(∆τ(tj,γk )),uk),uk~Ga(δk,φk),uk >0. Thus, uk is a random parameter with 
mean δk /φk and variance δ ϕk k/ 2  with PDF defined as follows:
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Thus, the PDF of the degradation increments ∆Zik(tj) of the ith 
unit at the corresponding time tj, i=1,2,…,N,j=1,2,…,M,k=1,2 is 
given by:
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According to Lawless and Crowder [10], for any fixed t, the ran-
dom variable Yik (tj )=(δk ∆Zik (tj )) ⁄ (φk vk (∆τ(tj,γk))) follows an F - dis-
tribution with 2vk ∆τ(tj,γk ) and 2δk degrees of freedom, thus, the CDF 
of ∆Zik (tj) is defined as:
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Taking into account (8), then the CDF of the lifetime when any of 
the degradation paths of the k =1,2 PC reach the respective critical 

level ωk is defined as t T Z t
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Given that the means (vk (∆τ(tj,γk ))) ⁄ uk and variances 
(vk(∆τ(tj,γk))) ⁄(uk

2) of the respective k=1,2 gamma processes are af-
fected by the random effects parameters uk. It is expected that, the 
degradation rates of the degradation paths tend to have a larger dis-
persion in both processes. In addition, it is also expected that the vari-
ances of the degradation observations within each unit of both proc-
esses tend to be large. Figure 1 provides pseudo-random paths of the 
gamma degradation process under the RE model. However, it may be 
the case that for some products, both PC present only large disper-
sions of the degradation rates or that only present large variances of 
the degradation observations within each unit.

A modification of the parameters’ structure of the gamma proc-
esses is proposed as Zik (tj)~Ga(ηk (∆τ (tj,γk)) uk,uk ) with uk following 
a gamma distribution. The degradation means and variances of this 
model can be obtained as ηk(∆τ (tj,γk)) and (ηk(∆τ (tj,γk))) ⁄uk , respec-
tively. It can be noted that only the variances are affected by the ran-
dom parameter uk. Thus, the gamma process with random diffusion 
(RV) results in ∆Zik(tj)~Ga(ηk(∆τ (tj,γk)) uk,uk ),uk~Ga(δk,φk ),uk >0, 
with PDF described as:
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The CDF of the lifetime when the degradation paths of any of the 
PC for k=1,2 reach a critical level ωk is defined as 
t T Z t

k k k kω ω ω= inf : ( ) ≥{ } and it is obtained in the same way as:
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As random effects are involved in the scale parameter uk of the RV 
model, it is expected that the variance of the degradation observations 
within each unit to be significant. However, a low level of variation in 
the degradation rates may be observed. Thus, the RV model is suitable 
for the degradation modeling of products for which overall degrada-
tion rate is low and a large unit-specific degradation variation exists. 
Figure 2 provides pseudo-random paths of the gamma degradation 
process under the RV model.

A second modification of the structure of the parameters of the 
gamma process is proposed as Z t Ga t u uik j k j k k k( ) ( )( )( )~ , ,ζ τ γ∆ 2  , 

the degradation means and variances of this model are defined as 

ζk (∆τ(tj,γk))uk and ζk ∆(τ(tj,γk)), respectively. Again, if uk follows a 
gamma distribution, only the means are affected by the random effects 
parameters. Thus, the random drift gamma process (RD) for k=1,2 PC 
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The CDF of the lifetime when the degradation paths of any of the 
degradation paths for k=1,2 reach a critical level ωk is defined as 
t T Z t

k k k kω ω ω= inf : ( ) ≥{ } and it is obtained in the same way as:
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Because random effects are considered in the parameters uk, the 
means of the RD gamma process varies to a certain level. It leads to a 
larger dispersion of the degradation rates, which is reflected in larger 
variations of the first-time passage distributions. Thus, this model is 
appropriate for the modeling of the degradation of products in which 
significant variation of the degradation rate within the products’ sam-
ples is observed. In Figure 3, a set of pseudo-random paths of the 
gamma degradation process under RD model are illustrated.

Fig. 1. Pseudo-random paths of the gamma degradation process under the RE 
model

Fig. 2. Pseudo-random paths of the gamma degradation process under the RV 
model

Fig. 3. Pseudo-random paths of the gamma degradation process under the 
RD model
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4. Bivariate modeling with copula functions

Supposing that the degradation process of k=1,2 PC are observed 
for i=1,2,…,N units and j=1,2,…,M observations are recorded at 
specified times t_j for each degradation process. Now consider that, 
stochastic gamma processes govern the degradation process of each 
PC as f Z ta ik j ∆ ( )( ) . In this paper, it is considered that the depend-
ence structure between degradation processes k=1,2 is described by a 
copula function in the form H(x,y)=C{F(x),G(y)}. Where, F(x),G(y) 
are two marginal CDF and x,y are two random variables. If H(x,y) is a 
joint distribution with marginal distributions F(x) and G(y), then there 
exists a unique copula C for x,y [15]. Thus, a bivariate copula is a CDF 
defined in [0,1]2 with uniform marginal distributions [0,1]. In this 
case, an Archimedean Frank copula is considered to model two degra-
dation measurements Zik(tj) with k=1,2 PC, i=1,2,…,N,j=1,2,…,M as 
H(∆Zi1 (tj), Zi2(tj))=C(F(∆Zi1 (tj )), F(∆Zi2 (tj )) | θ), where F(∆Zik (tj )) is 
the CDF of the respective marginal stochastic process for k=1,2 and θ 
is the association parameter of the copula function. It should be noted 
that the distributions described in (7 – 13) refer to the case where the 
degradation levels before tj are unknown. Instead, when it is assumed 
that the degradation levels measured before tj are known, the condi-
tional CDF are considered as F(∆Zik(tj )) | Zi1(t1), …,Zi1(t(j-1)) for k=1,2, 
i=1,2,…,N, and  j=1,2,…,M. Such that the bivariate copula results in 
H(∆Zi1(tj), Zi2(tj))=C(F(∆Zi1 (tj ) | Zi1(t1),…,Zi1(t(j-1)),  
F(∆Zi2 (tj)), Zi2(t1 )),…,Zi2(tj-1 )) | θ. With the marginal CDF defined 
as:
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where the conditional PDF of the random parameter is given by:
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The bivariate model is denoted as H(∆Zi1(tj), ∆Zi2(tj))=C(Uij1, Vij2), 
 where Uij1=F(∆Zi1(tj) | Zi2(t1),…,Zi1(t(j-1)) and  
Vij2=F(∆Zi2(tj) | Zi2(t1),…,Zi2(t(j-1)) are the CDF of the marginal gam-
ma process. If a simple gamma process is considered then the CDF 
is represented by (5). If random effects models are considered in the 
marginal processes and the degradation levels measured before tj are 
known, then the respective CDF can be obtained from (14). If the 
degradation levels measured before tj are unknown then the CDF can 
be obtained from (10) and (12) for the RV and RD models, respec-
tively. Parametric copula functions impose strong assumptions or re-
strictions on the correlation structure among CDF. This denotes the 
need to determine how a specific copula function is selected, and how 
the chosen copula function can be validated by data. Such a topic has 
been widely studied in the literature, for example, by comparing the 
sample empirical copula and theoretical copula. Practitioners may be 
referred to Durrleman et al. [5] and Melchiori [14]. In this paper, the 
Frank copula function is considered as C(Uij1,Vij2 | θ), to illustrate the 
joint modeling of the proposed models with random effects for the 
two degradation processes. In the literature, it has been found that the 
Frank copula works well when dealing with systems with two PC and 
when dealing with crack propagation data as can be seen in the works 
of [9, 31, 36], as the case study presented in this paper. The Frank 
copula function is presented in (15). Then, the log-likelihood function 

of the set of parameters ϑ η ζ γ δ ϕ θi k k k k k kv= ( ), , , , , ,  for k=1,2, and  
i=1,2,…, is described in (16).
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where c(Uij1,Vij2 | θ)=∂(C(Uij1,Vij2 | θ)) ⁄ (∂Uij1∂Vij2).

The product is considered to have failed if any of the PC reach the 
critical degradation level ωk, k=1,2. Thus, the reliability function can 
be described as  
R t P Z t Z t C R Ri j i j( ) = ( ) < ( ) <{ } = ( ) ( )( )1 1 2 2 1 1 2 2ω ω ω ω, , .

Different combinations of the marginal processes for the bivari-
ate modeling are proposed, these combinations are presented in Ta-
ble 1. The bivariate modeling implies that the dependence structure 
between the degradation processes of the two characteristics can be 
tested by using the association parameter (θ), which justifies the use 
of the copula function. The models B1,B2, and B2 consider bivariate 
gamma models with homogeneous random effects for the RE, RV, and 
RD models, respectively. However, another important aspect to con-
sider is that the degradation of each characteristic may be different in 
terms of the random effects that affect the behavior of the degradation 
paths. This means that, e.g., the degradation paths of the characteristic 
1 may exhibit a large variation of the degradation rate, and a low level 
of variation of the within degradation increments in the paths, while 
the characteristic 2 may exhibit a large variation in the within degra-
dation increments in the paths and a low variation of the degradation 
rates. For such cases, it may be important to consider heterogeneous 
marginal models with random effects in the bivariate modeling. In 
this paper, two heterogeneous models are considered and denoted as 
B4 and B5 in Table 1, where in the model B4 it is considered that the 
degradation of the characteristic 1 is governed by a gamma process 
with RD, while the degradation of the characteristic 2 is governed 
by a gamma process with RV. In the model B5, it is considered that 
Uij1=FRE (∆Zi1(tj) ) and Vij2=FRV (∆Zi2(tj)). Further bivariate combina-
tions of gamma processes with heterogeneous random effects can be 
considered depending on the observed behavior of the degradation 
paths of the degradation processes under study.

5. Parameters estimation

As the bivariate functions consider different combinations of 
gamma processes with random effects in terms of the scale parameter 
of the gamma process, it is easy to note that the joint bivariate distri-
bution function for any of the models Bi,i=1,2,3,4,5 may result in a 
non-standard complex form. 

Table 1. Bivariate models and bivariate heterogeneous Models

Model Uij1 Vij2

B1 FRE (∆Zi1(tj)) FRE (∆Zi2(tj))

B2 FRV (∆Zi1(tj)) FRV (∆Zi2(tj))

B3 FRD (∆Zi1(tj)) FRD (∆Zi2(tj))

B4 FRD (∆Zi1(tj)) FRV (∆Zi2(tj))

B5 FRE (∆Zi1(tj)) FRV (∆Zi2(tj))
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However, the MCMC can be utilized to estimate the parameters 
ϑi of interest from Bi, ,i=1,2,3,4,5. The MCMC procedure consists in 
generating samples from the joint posterior distribution. In this case, 
Gibbs sampling algorithm is utilized to obtain such samples from the 
joint distribution. Generally, the algorithm consists in dividing the pa-
rameter vector into d subvectors, ϑ=(ϑ1,…,ϑd ), such that each itera-
tion of the algorithm cycles through the subvectors of δ, drawing each 
subset conditional on the value of all vectors. This process can be seen 
as generating a realization of a Markov chain that is built from a set 
of base transition probabilities. When the base transition probabilities 
are applied in sequence the algorithm can be described as simulating 
a homogeneous Markov Chain ϑ(1),ϑ(2),ϑ(3),…,. It is assumed that the 
prior distributions for all the parameters of interest are non-informa-
tive and there is prior independence among the parameters of interest. 
The implementation of the Gibbs sampling algorithm for the estima-
tion of the parameters is implemented using the OpenBUGS package 
software [13]. Zeros trick is used in OpenBUGS given that the log-
likelihood is not a standard distribution [17]. Important information 
about this algorithm can be found in Gelfand and Smith [6], Casella 
and George [4], Smith and Roberts [28]. 

Considering that degradation measurements Zik (tj ) have been ob-
served of the ith unit at the corresponding time tj, i=1,2,…,N,j=1,2,… ,M 
for k=1,2 PC. Thus, ∆Zik(tj )=Zik(tj )−Zik(tj−1 )) is the degradation incre-
ment at the interval time tj−tj−1 . Then, the degradation increments 
∆Zik(tj ) are independent random variables that follow a gamma distri-
bution as Ga(vk(∆τ (tj,γk)), uk) for the RE model, Ga(ηk(∆τ (tj,γk)), uk) 
for the RV model, and Ga(ζk(∆τ (tj,γk)), uk) for the RD model, in all 
cases with uk following a gamma distribution. It should be noted that, 
under a gamma process with random effects, the degradation incre-
ments ∆Zik(tj ) are independent random variables only conditional to 
the value of (vk,ηk,ζk) for any of the described random effects models. 
Different combinations of the bivariate models 
with different random effects as marginal dis-
tributions are considered as described in Sec-
tion 4. Given that random effects are generated 
by  in all the models, it is considered that uk,i 
follows the same prior distributions with hy-
per-parameters (δk,φk ), which accounts for 
pooling the information of the random effects 
among the different degradation trajectories 
for k=1,2. The non-informative prior distribu-
tions for these hyper-parameters are consid-
ered as δ δ δk Gamma a b

k k
~ ,( )  and 

ϕ ϕ ϕk Gamma a b
k k

~ ,( ). A non-informative 

normal prior distribution is considered for the 
Frank copula parameter as θ θ θ~ ,Normal a b( )
. In addition, a non-informative gamma prior 
distribution is considered for the shape param-
eters of the gamma processes (vk,ηk,ζk). Lastly, 
a gamma distribution is considered for γk as 
γ γ γk Gamma a b

k k
~ ,( ) , in order to avoid neg-

ative values of the time-scale transformation. 
The bivariate joint Frank copula function spec-
ified in (15) is implemented in OpenBUGS 
with the marginal CDF described in Table 1 as 
Bi by considering the proposed prior distribu-
tions for every parameter of interest.

6. Case study

In the following, a case study is presented, which consisted in 
the fatigue-crack propagation of two cracks in two terminals of an 
electronic device. Each device has two terminals, whose function is 
to transfer a signal to a receptor. Some cracks may be present in both 
terminals. The propagation of the cracks to a certain critical length can 
lead to failure of the device given the inability of transferring the sig-
nal to the receptor. A DT based on vibration was carried out in order 
to study the propagation of cracks in the terminals of ten devices. As 
every device has two terminals, two sets of fatigue-crack growth data 
were obtained. The length increments of the cracks for both terminals 
were measured every 0.1 hundred thousand cycles until 0.9 hundred 
thousand cycles. The measurements for every crack were performed 
at the same measurement times, and by considering equally distanced 
inspection times. The increments of the degradation were measure 
by considering a vision system with special software applications to 
measure crack propagations. The obtained data are presented in Table 
2, the units are in millimeters. In Figure 4, the crack degradation paths 
for the two terminals of every device are illustrated. 

The propagation of the cracks can be seen as a degradation proc-
ess and therefore a stochastic process. As the device counts with two 
terminals, the crack propagation of every terminal can be seen as 
degradation processes. Considering that the cracks are from differ-
ent positions, it is important to assess the dependence in the cracks 
propagation of the terminals for every device. It is considered that the 
device has failed if the length of any of the two terminal’ cracks cross 
the critical limit of 0.663 mm. Such critical level of degradation was 
obtained by considering the total width of the terminal defined by the 
customer of the product. In this case, if a crack length exceeds the to-
tal width of the terminal, a failure of the system can be obtained given 
that the inability of the product to transfer a signal the receptor. 

Table2. Fatigue-crack growth increments dataset for terminals (in milimeters)

Hundred thousands of cycles

Terminal De-
vice 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1 0 0.014 0.018 0.016 0.021 0.089 0.09 0.02 0.06 0.014

2 0 0.031 0.017 0.075 0.011 0.024 0.025 0.08 0.01 0.043

3 0 0.011 0.069 0.07 0.03 0.01 0.01 0.01 0.012 0.073

4 0 0.03 0.02 0.08 0.03 0.05 0.06 0.09 0.02 0.055

5 0 0.01 0.012 0.08 0.031 0.05 0.05 0.01 0.035 0.015

6 0 0.011 0.05 0.09 0.026 0.084 0.085 0.022 0.036 0.016

7 0 0.017 0.012 0.07 0.01 0.015 0.016 0.01 0.099 0.03

8 0 0.026 0.016 0.01 0.01 0.012 0.01 0.01 0.021 0.016

9 0 0.03 0.08 0.051 0.072 0.09 0.09 0.03 0.08 0.033

10 0 0.08 0.012 0.016 0.032 0.01 0.01 0.02 0.013 0.034

2

1 0 0.01 0.02 0.025 0.052 0.058 0.018 0.017 0.06 0.042

2 0 0.09 0.071 0.011 0.075 0.012 0.022 0.09 0.03 0.028

3 0 0.01 0.05 0.021 0.037 0.024 0.016 0.011 0.063 0.03

4 0 0.016 0.06 0.011 0.017 0.023 0.071 0.01 0.01 0.04

5 0 0.036 0.06 0.08 0.028 0.038 0.039 0.044 0.09 0.08

6 0 0.014 0.088 0.01 0.082 0.083 0.012 0.016 0.03 0.056

7 0 0.037 0.027 0.014 0.018 0.028 0.04 0.07 0.02 0.072

8 0 0.035 0.051 0.019 0.069 0.093 0.01 0.07 0.014 0.023

9 0 0.067 0.081 0.013 0.012 0.011 0.034 0.011 0.01 0.046

10 0 0.025 0.027 0.012 0.012 0.075 0.036 0.018 0.017 0.04
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As can be seen from the cumulative degradation paths in Figure 4, 
there are several differences among the degradation paths of a single 
terminal and between terminals. In the degradation paths of termi-
nal 1, a large variation of the degradation rate can be observed which 
may indicates that the random effects affect the degradation rate, and 
the opposite can be seen in the degradation paths of terminal 2, where 
the variation is rather small. From both terminals, it can be noted that 
a large variation of the within increments is observed, which may in-
dicates that the random effects affect the diffusion of the degradation 
process of both terminals. From these behaviors, it can be noted that 
the random effects have different influences on the degradation proc-
esses as described above. The different bivariate models presented in 
Table 1 are considered, these models were estimated via Gibbs sam-
pling by using OpenBUGS. 

6.1. Estimation of Proposed Models

Considering the dataset described in Table 2, N=10 and M=10 and 
the five bivariate models Bi,i=1,2,3,4,5 described in Table 1, with pa-
rameters:

ϑ – 1=(v1,γ1,δ1,φ1,v2,γ2,δ2,φ2,θ ), for the bivariate RE model, with 
means vk(∆τ(tj,γk)) ⁄ and variances vk(∆τ(tj,γk)) ⁄ 2

ku , for k =1,2.
ϑ – 2=(η1,γ1,δ1,φ1,η2,γ2,δ2,φ2,θ ) for the bivariate  RV model, with 
means ηk(∆τ(tj,γk)) and variances ηk(∆τ(tj,γk)) ⁄, for k =1,2.
ϑ – 3=(η1,γ1,δ1,φ1,ζ2,γ2,δ2,φ2,θ) for the bivariate  RD model, with 
means ζk(∆τ(tj,γk)) and variances ζk(∆τ(tj,γk)), for k =1,2.
ϑ – 4=(ζk,γ1,δ1,φ2,η2,γ2,δ2,φ2,θ) for the bivariate heterogeneous 
RD-RV model, with means ζ1(∆τ(tj,γk))u1, η2(∆τ(tj,γk)) and vari-
ances ζ1(∆τ(tj,γk) ), η2(∆τ(tj,γk)) ⁄u2 .
ϑ – 5=(v1,γ1,δ1,φ1,η2,γ2,δ2,φ2,θ ), for the bivariate heterogeneous 
RE-RV model, with means v1(∆τ(tj,γk)) ⁄ u1, η2(∆τ(tj,γk)) and 
variances v1(∆τ(tj,γk)) ⁄

2
1u , η2(∆τ(tj,γk)) ⁄ u2.

Based on the Frank copula function (15) and the log-likelihood 
function in (16) with ϑi,i=1,2,3,4,5, the estimated parameters were 
obtained by using OpenBUGS. It is assumed that there are prior in-
dependence among the parameters of interest. Estimation of the pa-
rameters was performed by using the zeros trick in the developed al-
gorithm to specify the bivariate log-likelihood function. Two sets of 
initial values are considered in the algorithm to assess the convergence 
of the parameters of interest with the Brooks-Gelman-Rubin (BGR) 
statistic [7]. A total of 50,000 iterations were considered for burn-in 
and 100,000 were considered for estimation purposes. As two sets of 
initial values were determined for every parameter, the BGR statistic 
was calculated for the parameters of interest. In general, it was found 
that convergence is achieved in every parameter in accordance with 
the BGR graphs obtained from OpenBUGS. The estimations obtained 

for the parameters of every model Bi, along with 
the standard deviation, Monte Carlo error and 
some percentiles are presented in Table 3.

Information criteria was used to select the 
best fitting random effects bivariate model. The 
Akaike Information Criterion (AIC) is used for 
such purpose, which is an appealing tool for 
model selection based on information. The 
model with the lowest value of AIC is consid-
ered as the best fitting model [1]. This criterion 
is defined as AIC=−2×l(ϑ1 )+2R; where, l(ϑ1 ) is 
the evaluated log-likelihood function from (16) 
for any of the models  i=1,2,3,4,5, for the Frank 
copula and R is the number of parameters. In 
addition, the Kendall coefficient was estimated 
from the copula parameter (θ), this coefficient 
provides a good alternative to measure the level 
of dependence between the marginal distribu-
tions from the copula. The Kendall coefficient 
can be obtained from the Frank copula as 

1−4 ⁄ θ [D1(−θ)−1], where D x s x t e dts
s

x
s t( ) = −∫/ /

0
1  is the Debye 

function. The AIC and Kendall values are presented in Table 4.

As can be noted from Table 4, the best fitting model is the het-
erogeneous model B5, given that it has the lowest value of AIC. This 
model considers a RE gamma process model for the terminal 1 and a 
RV gamma process model for the terminal 2. The result makes sense, 
given that as can be seen from the cumulative degradation paths in 
Figure 4, the paths of terminal 1 have large variations of the degrada-
tion rate and the within degradation increments. Such characteristics 
are described when the RE model is considered given that both the 
mean and variance of the gamma process are affected by the random 
effects parameter. On the other hand, the degradation paths of ter-
minal 2 have a lower level of variation of the degradation rates, and 
a large variation of the within degradation increments, such charac-
teristics are described when the RV model is considered given that 
only the variance of the gamma process is affected by the random ef-
fects parameter, as described in Section 3. However, it must be noted 
that the differences among the AIC values for the proposed models is 
slight. Furthermore, the B3 model, which considers that both terminals 
1 and 2 are governed by a gamma process with RD, is the model with 
the poorest performance. The level of dependence described by the 
Kendall coefficient from the bivariate RE-RV model is 0.0411, which 
may indicates a low level of dependence, however, it must be consid-
ered when dealing with the reliability assessment of the product as a 
whole. In addition, from the estimates in Table 3 it can be noted that 
in the model B5 the credible interval of θ include the value 0. Hence, 
the degradation processes seem to be independent, because for θ→0 
the marginal CDF are independent, which explains why the obtained 
Kendall coefficients are small. In Figure 5, the contour and density 
plots are presented for the best fitting heterogeneous model via Frank 
copula.

Fig. 4. Cumulative degradation paths based on the fatigue-crack growth dataset. (a) Terminal 1, (b) Ter-
minal 2.

Table 4. Estimation of information criteria and dependence structure for 
bivariate models

Model AIC Kendall Ranking

B1 −8415 0.0405 2

B2 −8412 0.0415 3

B3 −8410 0.0402 5

B4 −8411 0.0411 4

B5 −8426 0.0411 1
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Table 3. Parameters estimates for the considered bivariate models

Model Parameter Mean Sd MC error

B1

ν1 18.77 2.595 0.1067 14.09 18.63 24.28

ν2 21.79 2.916 0.1186 16.31 21.71 27.72

γ1 1.058 0.07221 0.0002371 0.9226 1.056 1.206

γ2 1.021 0.06957 0.0002173 0.8912 1.018 1.164

φ1 31.04 20.62 1.152 4.48 30.51 77.01

φ2 25.3 15.67 0.8731 7.097 20.57 64.25

δ1 1562 1025 57.26 232.3 1550 3780

δ2 1427 834.9 46.49 384.1 1197 3606

θ -0.3624 0.5759 0.003893 -1.5 -0.3622 0.7729

B2

η1 0.3747 0.03042 0.000828 0.3199 0.3729 0.439

η2 0.3866 0.02989 0.000836 0.3331 0.3847 0.4509

γ1 1.058 0.07411 0.000246 0.9188 1.055 1.209

γ2 1.021 0.0706 0.000225 0.8889 1.018 1.167

φ1 59.82 32.64 1.825 16.23 52.46 138.3

φ2 47.9 35.76 2.004 10.65 38.92 150.1

δ1 2877 1659 92.82 763.8 2450 6520

δ2 2496 1701 95.3 584.5 2159 7119

θ -0.3775 0.5809 0.004144 -1.531 -0.3794 0.7457

B3

ζ1 0.008603 0.002217 0.000110 0.005479 0.008195 0.01426

ζ2 0.00719 0.001492 0.0000723 0.004775 0.007017 0.0106

γ1 1.058 0.07482 0.000259 0.9176 1.055 1.212

γ2 1.02 0.07006 0.000218 0.8899 1.018 1.164

φ1 56.68 41.34 2.317 11.53 41.8 154.7

φ2 44.97 25.2 1.408 11.17 38.38 102.5

δ1 2523 1787 100.2 558.3 1904 6689

δ2 2399 1238 69.06 655.5 2074 5118

θ -0.368 0.5892 0.003918 -1.521 -0.366 0.785

B4

ζ1 0.007357 0.002776 0.000132 0.003668 0.006824 0.01447

η2 0.388 0.02938 0.000710 0.335 0.3864 0.4499

γ1 1.059 0.07225 0.000235 0.9242 1.057 1.208

γ2 1.02 0.07114 0.000230 0.8889 1.017 1.168

φ1 28.33 23.98 1.343 1.698 19.96 83.55

φ2 33.42 17.42 0.9705 4.984 32.73 66.56

δ1 1430 1228 68.76 89.53 1028 4625

δ2 1765 965.9 53.86 250.2 1683 3714

θ -0.3593 0.5912 0.003846 -1.518 -0.3588 0.7949

B5

ν1 18.72 2.501 0.09876 14.08 18.65 23.78

η2 0.3871 0.02964 0.0008099 0.3332 0.3857 0.4492

γ1 1.058 0.07298 0.0002367 0.9218 1.055 1.207

γ2 1.021 0.07101 0.0002234 0.8886 1.018 1.168

φ1 25.68 14.62 0.8119 2.076 24.05 55.83

φ2 75.7 56.48 3.173 15.52 54.38 221.6

δ1 1294 737.9 41 107.8 1215 2832

δ2 3811 2418 135.8 821 2948 9287

θ -0.3596 0.5794 0.00403 -1.506 -0.3546 0.7774
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6.2. Reliability Assessment

Based on the estimates obtained in Table 3, it is possible to estimate 
the reliability of the product. The marginal reliability functions can be 
obtained by considering the critical level of degradation ωk=0.663, 
for k=1,2. In the case of the RE model, the marginal reliability func-
tion is obtained with (17) by simply substituting the corresponding 
parameter estimations form Table 3 in the function. As the parameters 
for the degradation process of each terminal are estimated marginally, 
the reliability functions can be easily obtained. In the case of the RV 
and RD models, the reliability functions do not have a closed form. 
However, the kernel density distributions of the reliability functions 
can be obtained via simulation-based integration [24]. Thus, by con-
sidering the reliability functions described in (18) and (19), and the 
posterior distributions of the parameters of interest (vk,ηk, k,γk,δk,φk), 
the reliability functions can be obtained as:
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Considering the joint posterior distributions p(ϑi | Zk), where 
Zk=(Z1k(t1),…,Z1k(tM),…,ZNk(t1),…,ZNk(tM)) for any bivariate model 
Bi with parameters ϑi for i=1,2,3,4,5, the reliability functions can be 
obtained as:

 R t Z R t p Z dm k m i m i k i
i

( ) = ( ) ( )∫
ϑ

ϑ ϑ ϑ  (20)

where m=RV or RD, and pm (ϑi | Zk) is the joint posterior distribution 
obtained from the implemented Bayesian estimation approach de-
scribed in Section 4. The simulation-based integration is implemented 
by calculating the relevant values of RRV (t | ϑ̂i) and RRD(t | ϑ̂i) at each 
generated sample ϑ̂i=(v̂k,η̂ k, ζ̂ k, γ̂k,δ̂k,φ̂k) from pm(ϑ̂i| Zk) for any of the 
k=1,2 random effects models. 

Considering the bivariate models, the bivariate reliability function 
can be written as:

R(t | Zk)=P(Zi1(tj)<ω1,Zi2(tj)<ω2)=C(R(t | Zi1(tj)),R(t | Zi2(tj)))   (21)

where ω1=ω2=0.663. Considering all 
the bivariate models Bi, i=1,2,3,4,5, and 
the reliability functions described in 
(20-21), the reliability plots for terminal 
1 and 2 were obtained and are compared 
in Figure 6. The best fitting model is B5, 
which implies a RE model for terminal 
1 and a RV model for terminal 2. Con-
sidering these two marginal models, the 
reliability functions were also obtained 
and are compared in Figure 7.

From Figure 6a, it can be noted that 
the behavior of the reliability functions 
for RD and RD (with RV) is not the 
same. The difference between these two 
models is that the RD function comes 
from a bivariate RD model, while the 
RD (with RV) comes from a heteroge-

Fig. 5. Contour plot (a) and density plot (b) for the bivariate Frank copula with RE and RV marginal gamma ran-
dom effects models.

Fig. 6. Comparison of reliability functions considering dependence. (a) Terminal 1, (b) Terminal 2.
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variance for terminal 2 under RV in B5 is 0.007221. This means that, 
as the terminal 1 has a larger variance, some of the degradation paths 
will have large first-passage times, and for terminal 2 the first-time 
passage times may occur earlier with more probability. In addition, 
the reliability functions for the dependent and independent scenarios 
constantly overlap, which can be explained by the fact the considered 
level of dependence in terms of the Kendall coefficient is quite small 
0.0411.

7. Concluding remarks

This paper introduces a bivariate degradation modeling approach 
for two PC based on marginal gamma processes with heterogeneous 
random effects. As the random effects may affect in different ways 
the degradation of each PC, different modifications of the structure 
of the parameters of the marginal gamma processes were performed. 
Such modifications are considered in the bivariate modeling, which 
allows to describe the heterogeneous behaviors of the degradation 
processes due to random effects. Different combinations of marginal 
gamma processes with random effects joined by a Frank copula were 
considered, and it was found that a bivariate model with marginal RE 
and RV models for the two degradation processes is slightly the best 
fitting model according to information criteria. The selection of the 
best fitting bivariate model can be explained by the behaviors of the 
degradation paths of each PC. The terminal 1 has a large variation 
of the degradation rate and the within degradation increments, such 
characteristics are described by the gamma process with RE. While 
the terminal 2, has only a large variation of the within degradation 
increments, which is a characteristic of the gamma process with RV. 
Under the selected model, it is expected that the estimations of the 
reliability and the remaining useful life of the product under study to 
be more accurate, as noted in the comparison of reliability functions 
in Figure 6. The comparison of the reliability functions in Figure 7 
shows that terminal 2 should decide the reliability of the product. The 
proposed models can be extended to consider more than two marginal 
degradation processes. Future research can be conducted by consider-
ing different distributions for the random effects scale parameter of 
the gamma process, and by letting the shape parameter to be a random 
effects parameter.

neous RD-RV model. This denotes that there may be some differences 
in the reliability assessment if homogeneous or heterogeneous random 
effects are considered in the modeling. Although not so obvious, the 
same differences can be noted in the reliability functions in Figure 6b 
for the RV, RV (with RD), and RV (with RE) models. The device is 
considered to have failed if any of the two terminal’s cracks exceeds 
the critical degradation level ωk=0.663. As can be noted from Figure 
7 the reliability of terminal 1 is higher than the reliability of terminal 
2. Which can be explained by considering that the degradation mean 
for terminal 1 under the RE model in B5 is 0.3715, and the degradation 
mean for terminal 2 under the RV model in B5 is 0.3855. As can be 
noted the degradation mean for terminal 2 is greater than the degrada-
tion mean for terminal 2, which means that the first-passage times of 
terminal 2 will occur earlier than the ones from terminal 1. In addition, 
the variance of terminal 1 under RE in B5 results in 0.007379, and the 

Fig. 7. Comparison of reliability functions for terminal 1 and 2 with RE and 
RV models.
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