PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The deviation from eutectic composition in boundary layer for eutectic growth: a phase-field study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the deviation from eutectic composition in boundary layer for eutectic growth is studied by phase-field method. According to a series of artificial phase diagram, the lamellar eutectic growth of these alloy is simulated during directional solidification. At steady state, average growth velocity of eutectic lamella is equal to the pulling velocity. With the increasing of the liquidus slope of β phase, the average composition in boundary layer would deviate from eutectic composition and the deviation increases. The constitutional undercooling difference between both solid phases caused by the deviation increases with the increasing of the deviation. The β phase would develop a depression under the influence of the deviation.
Twórcy
autor
  • Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die & Mould Technology, Wuhan 430074, Hubei Province, China
autor
  • Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die & Mould Technology, Wuhan 430074, Hubei Province, China
autor
  • Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die & Mould Technology, Wuhan 430074, Hubei Province, China
autor
  • Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die & Mould Technology, Wuhan 430074, Hubei Province, China
autor
  • Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die & Mould Technology, Wuhan 430074, Hubei Province, China
Bibliografia
  • [1] K. A. Jackson, J. D. Hunt, Trans. Metall. Soc. AIME 236, 1129-1142 (1966). DOI: 10.1016/B978-0-08-092523-3.50040-X
  • [2] D. J. Fisher, W. Kurz, Acta Metall. Mater. 28, 777-794 (1980). DOI: 10.1016/0001-6160(80)90155-8
  • [3] P. Magnin, W. Kurz, Acta Metall. Mater. 35, 1119-1128 (1987). DOI: 10.1016/0001-6160(87)90059-9
  • [4] E. Guzik, D. Kopyciński, Metall. Mater. Trans. A 37, 3057-3 067 (2006). DOI: 10.1007/s11661-006-0187-7
  • [5] P. Magnin, R. Trivedi, Acta Metall. Mater. 39, 453-467(1991). DOI: 10.1016/0956-7151(91)90114-G
  • [6] P. Magnin, J. T. Mason, R Trivedi, Acta Metall. Mater. 39, 469-480 (1991). DOI: 10.1016/0956-7151(91)90115-H
  • [7] J. J. Xu, Y. Q. Chen, Acta Mater. 80, 220-238 (2014). DOI: 10.1016/j.actamat.2014.06.047
  • [8] J. J. Xu, X. M. Li, Y. Q. Chen, J. Cryst. Growth 401, 93-98 (2014). DOI: 10.1016/j.jcrysgro.2013.11.050
  • [9] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, Phys. D, 94, 135-147 (1996). DOI: 10.1016/0167-2789(95)00298-7
  • [10] I. Steinbach, F. Pezzolla, Phys. D, 134, 385-393 (1999). DOI: 10.1016/S0167-2789(99)00129-3
  • [11] S. G. Kim, W. T. Kim, T. Suzuki, M. Ode, J. Cryst. Growth 261, 135-158 (2004). DOI: 10.1016/j.jcrysgro.2003.08.078
  • [12] J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73, 66122 (2006). DOI: 10.1103/PhysRevE.73.066122
  • [13] M. Ginibre, S. Akamatsu, G. Faivre, Phys. Rev. E 56, 780-796 (1997). DOI: 10.1103/PhysRevE.56.780
Uwagi
EN
1. This research is financially supported by a project aided by the National Nature Science Fund Projects of China (No. 51475181, No. 51605174).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa90c419-c055-411a-9d18-a6062215d8c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.