Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper a comprehensive model of a piston ring pack motion on an oil film has been presented. The local thickness of the oil film can be compared to height of the combined surface roughness of a cylinder liner and piston rings. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been combined and used in this paper. In addition a model of gas flow through the labyrinth seal of piston rings has been developed. The main parts of the model and software have been experimentally verified abroad by the author at the marine engine designing centre. For the selected two-stroke marine engine, the influence of the number of piston rings used and the type of the top ring lock (straight or overlapped) on blowby to piston underside and on friction losses of the piston-ring-cylinder (PRC) system have been investigated. The developed model and software can be useful for optimization of the PRC system design.
Czasopismo
Rocznik
Tom
Strony
164--170
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
Bibliografia
- [1] DEMMERLE, R., BARROW, S., TERRETTAZ, F., JAQUET, D. New insights into the piston running behaviour of “Sulzer” large bore diesel engines. CIMAC Congress. 2001, Hamburg.
- [2] DOWSON, D. Piston assemblies; background and lubrication analysis, engine tribology. Taylor C.M. (editor). Elsevier Science. 1993, 213-240.
- [3] GREENWOOD, J., TRIPP, J.H. The contact of two nominally flat rough surfaces. Proc Inst. Mech. Eng. 1971, 185, 625-633.
- [4] ISKRA, A. Parametry filmu olejowego w węzłach mechanizmu tłokowo–korbowego silnika spalinowego. Poznań. Wydawnictwo Politechniki Poznańskiej, 2001.
- [5] KOSZAŁKA, G. Application of the piston-rings-cylinder kit model in the evaluation of operational changes in blowby flow rate. Eksploatacja i Niezawodność – Maintenance and Reliability. 2010, 4, 72-81.
- [6] KOSZAŁKA, G., GUZIK, M. Mathematical model of piston ring sealing in combustion engine. Polish Maritime Research. 2014, 4(84), 66-78.
- [7] LIVANOS, G.A., KYRTATOS, N.P. Friction model of a marine diesel engine piston assembly. Tribology International. 2007, 40, 1441-1453.
- [8] OFFNER, G. Friction power loss simulation of internal combustion engines considering mixed lubricated radial slider, axial slider and piston to liner contacts. Tribology Transactions. 2013, 56(3), 503-515.
- [9] PATIR, N., CHENG, H.S. Application of average flow model to lubrication between rough sliding surfaces. Transactions of ASME. 1979, 101.
- [10] RÄSS, K., AMOSER, M. Progressive development of two stroke engine tribology. CIMAC Congress. 2007, 83, Vienna.
- [11] SERDECKI, W. Badania współpracy elementów układu tłokowo-cylindrowego silnika spalinowego. Wydawnictwo Politechniki Poznańskiej. Poznań 2002.
- [12] TAMMINEN, J., SANDSTRÖM, C.-E., ANDERSSON, P. Influence of load on the tribological conditions in piston ring and cylinder liner contacts in a medium-speed diesel engine. Tribology International. 2006, 39, 1643-1652.
- [13] TIAN, T. Dynamic behaviors of piston rings and their practical impact – part II: oil transport, friction, and wear of ring/liner interface and the effects of piston and ring dynamics. Proc. I. Mech. E, Part J: Journal of Engineering Tribology. 2002, 216, 229-247.
- [14] Wärtsilä Technology Review, information materials concerning IC engines designed at Wärtsilä company.
- [15] WOLFF, A. Experimental verification of the model of piston ring pack operation of an internal combustion engine. The Archive of Mechanical Engineering. 2009, LVI(1), 73-90.
- [16] WOLFF, A. Numerical analysis of piston ring pack operation of a marine two-stroke engine. Combustion Engines. 2011, 146(3).
- [17] WOLFF, A. Influence of engine load on piston ring pack operation of a marine two-stroke engine. Journal of KONES Powertrain and Transport. 2012, 19(2), 557-569.
- [18] WOLFF, A. Simulation based study of the system pistonring-cylinder of a marine two-stroke engine. Tribology Transactions. 2014, 57(4), 653-667.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa905485-45e2-47d7-89c0-0d7c50525338