PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A condition for asset redundancy in the mean-variance model of portfolio investment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mean-variance approach to portfolio investment exploits the fact that the diversification of investments by combination of different assets in one portfolio allows for reducing the financial risks significantly. The mean-variance model is formulated as a bi-objective optimization problem with linear (expected return) and quadratic (variance) objective functions. Given a set of available assets, the investor searches for a portfolio yielding the most preferred combination of these objectives. Naturally, the search is limited to the set of non-dominated combinations, referred to as the Pareto front. Due to the globalization of financial markets, investors nowadays have access to large numbers of assets. We examine the possibility of reducing the problem size by identifying those assets, whose removal does not affect the resulting Pareto front, thereby not deteriorating the quality of the solution from the investor’s perspective. We found a sufficient condition for asset redundancy, which can be verified before solving the problem. This condition is based on the possibility of reallocating the share of one asset in a portfolio to another asset without deteriorating the objective function values. We also proposed a parametric relaxation of this condition, making it possible to removemore assets for a price of a negligible deterioration of the Pareto front. Computational experiments conducted on five real-world problems have demonstrated that the problem size can be reduced significantly using the proposed approach.
Rocznik
Strony
179--191
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
  • Faculty of Informatics and Communication, University of Economics in Katowice, Poland
  • Systems Research Institute, Polish Academy of Sciences, Poland
  • Warsaw School of Information Technology, Poland
  • Systems Research Institute, Polish Academy of Sciences, Poland
  • Systems Research Institute, Polish Academy of Sciences, Poland
Bibliografia
  • Anagnostopoulos, K.P. and Mamanis, G. (2011) Multiobjective evolutionary algorithms for complex portfolio optimization problems. Computational Management Science 8, 259–279.
  • Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D.(1999) Coherent measures of risk. Mathematical Finance, 9(3):203–228. URL https://onlinelibrary.wiley.com/doi/abs/10.1111 /1467-9965.00068.
  • D. Bertsimas, D. and Cory-Wright, R. (2018) A scalable algorithm for sparse portfolio selection.
  • Better, M. and Glover, F. (2006) Selecting project portfolios by optimizing simulations. The Engineering Economist, 51(2):81–97. URL https://www.tandfonline.com/doi/abs/10.1080/00137910600695593.
  • Bienstock, D. (1996) Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, Series B, 74(2):121–140.
  • Briec, W., Kerstens, K. and de Woestyne, I. V. (2013) Portfolio selection with skewness: A comparison of methods and a generalized one fund result. European Journal of Operational Research, 230(2):412–421. 10.1016/j.ejor.2013.04.021. URL http://www.sciencedirect.com/science/article/pii/S0377221713003196.
  • Chang, T.-J., Meade, N., Beasley, J. and Sharaiha, Y. (2000) Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13):1271–1302. http://www.sciencedirect.com /science/article/pii/S030505489900074X.
  • Chen, W.M., Hwang, H.K., Tsai, T.H. (2012) Maxima-fnding algorithms for multidimensional samples: A two-phase approach. Computational Geometry 45, 33–53.
  • Ehrgott, M., Klamroth, K. and Schwehm, C. (2004) An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3):752–770. doi: 10.1016/S0377-2217(02)00881-0. http://www.sciencedirect.com/science/article/pii/ S0377221702008810.
  • Elton, E., Gruber, M., Brown, S. and Goetzmann, W. (2014) Modern Portfolio Theory and Investment Analysis. John Wiley & Sons, United States of America, 9th edition.
  • Elton, E. J. and Gruber, J. (2000) The rationality of asset allocation recommendations. The Journal of Financial and Quantitative Analysis, 35(1):27–41. http://www.jstor.org/stable/2676237.
  • Emerich, M. and Yevseyeva, I. (2018) Portfolio optimization in nonfinancial application domains. The presentation given at the conference ”Large-scale portfolio investments (Beyond the Markowitz portfolio theory)”, Warsaw, Poland, Apr. 2018. https://www.impan.pl/en/activities/banach-center/ conferences/18-portfolio/program.
  • Francis, J. and Kim, D. (2013) Modern Portfolio Theory: Foundations, Analysis, and New Developments. Wiley Finance, Wiley.
  • Frangioni, A. and Gentile, C. (2006) Perspective cuts for a class of convex 1 mixed integer programs. Math. Program., 106(2):225–236. doi: 10.1007/s10107-005-0594-3.
  • Hirschberger, M., Qi, Y. and Steuer, R. E. (2007) Randomly generating portfolio-selection covariance matrices with specified distributional characteristics. European Journal of Operational Research, 177(3):1610–1625, mar 2007. 10.1016/j.ejor.2005.10.014.
  • Jacob, N. and Pettit, R. (1984) Investments. Richard D. Irwin Inc., Homewood, USA.
  • Jayasekara, P. L., Adelgren, N. and Wiecek, M. M. (2019) On convex multiobjective programs with application to portfolio optimization. Journal of Multi-Criteria Decision Analysis, n/a(n/a):1–14, 2019. https://onlinelibrary.wiley.com/doi/abs /10.1002/mcda.1690.
  • Kalayci, C. B., Ertenlice, O. and Akbay, M. A. (2019) A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Systems with Applications, 125:345–368. http://www.sciencedirect.com /science/article/pii/S0957417419301162.
  • Kaliszewski, I. (2000) Using trade-off information in decision-making algorithms. Computers & Operations Research 27, 161–182.
  • Kaliszewski, I. and Michalowski, W. (1997) Efcient solutions and bounds on tradeoffs. Journal of Optimization Theory and Applications 94, 381–394.
  • Kolm, P.N., Tütüncü, R. and Fabozzi, F.J. (2014) 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research 234, 356–371.
  • Konno, H. and Suzuki, K. (1992) A fast algorithm for solving large scale mean-variance models by compact factorization of covariance matrices. Journal of the Operations Research Society of Japan, 35(1):93–104, 1992. 10.15807/jorsj.35.93.
  • Lejeune, M.A. (2013) Portfolio optimization with combinatorial and downside return constraints. In: L.F. Zuluaga, T. Terlaky, eds., Modeling and Optimization: Theory and Applications. Springer New York, New York, 31–50.
  • Lo, A.W., Petrov, C. And Wierzbicki, M. (2003) It’s 11pm - do you know where your liquidity is? The mean-variance liquidity frontier. Journal Of Investment Management, 1(1). https://ssrn.com/abstract=495103.
  • Lwin, K., Qu, R. and Kendall, G. (2014) A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Applied Soft Computing, 24:757–772. 10.1016/j. asoc.2014.08.026.
  • Mansini, R., Ogryczak, W. and Speranza, M. G. (2014) Twenty years of linear programming based portfolio optimization. European Journal of Operational Research, 234(2):518–535, 2014. 10.1016/j.ejor.2013.08.035. http://www.sciencedirect.com/science/article/pii /S0377221713007194.
  • Mansini, R., Ogryczak, W. and Speranza, M. G. (2015) Linear and Mixed Integer Programming for Portfolio Optimization. EURO Advanced Tutorials on Operational Research. Chapter ”Portfolio optimization with other real features”, 63–72. Springer International Publishing.
  • Markowitz, H. (1952) Portfolio selection. Journal of Finance, 7(1):77–91. 10.2307/2975974.
  • Markowitz, H.M. (1959) Portfolio Selection: Efficient Diversification of Investments. Yale University Press.
  • Mashayekhi, Z. and Omrani, H. (2016) An integrated multi-objective Markowitz-DEA cross-efficiency model with fuzzy returns for portfolio selection problem. Applied Soft Computing, 38:1–9. http://www.sciencedirect.com/science/article/pii/S1568494615005906.
  • Merton, R. (1972) An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis 7, 1851–1872.
  • OR-Library (2018) http://people.brunel.ac.uk/mastjjb/jeb/info.html, last accessed: August 2018.
  • Podkopaev, D. (2007) An approach to finding trade-off solutions by a linear transformation of objective functions. Control and Cybernetics 36, 347–356.
  • Podkopaev, D. (2008) Representing partial information on preferences with the help of linear transformation of objective space. In: T. Trzaskalik, ed., Multiple Criteria Decision Making ’07. Karol Adamiecki University of Economics Press, 175–194.
  • Pogue, G. A. (1970) An extension of the Markowitz portfolio selection model to include variable transactions’ costs, short sales, leverage policies and taxes. The Journal of Finance, 25(5):1005–1027. http://www.jstor.org/stable/2325576.
  • Salehpoor, I. B. and Molla-Alizadeh-Zavardehi, S. (2019) A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms. Applied Soft Computing, 75:233–253. 10.1016/j.asoc.2018.11.011. http://www.sciencedirect.com/science/article/pii/S1568494618306434.
  • Steuer, R. E., Hirschberger, M. and Deb, K. (2016) Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers. Journal of Global Optimization, 64(1):33–48. doi: 10.1007/s10898-015-0305-4.
  • Tobin, J. (1958) Liquidity preference as behavior towards risk. Review of Economic Studies, 25(2):65–86. https://EconPapers.repec.org/RePEc:oup:restud:v:25:y:1958:i:2:p:65-86.
  • Utz, S., Wimmer, M., Hirschberger, M. and Steuer, R. E. (2014) Tricriterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2): 491–498. doi: 10.1016/j.ejor.2013.07.024. http://www.sciencedirect.com/science/article/pii/S037722171300605X.
  • Utz, S., Wimmer, M. and Steuer, R. E. (2015) Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1):331–338. https://epub.uni-regensburg.de/31634/.
  • Yoshimoto, A. (1996) The mean-variance approach to portfolio optimization subject to transaction costs. Journal of the Operations Research Society of Japan, 39(1):99–117. doi: 10.15807/jorsj.39.99.
  • Zhang, Y., Li, X. and Guo, S. (2018) Portfolio selection problems with Markowitz’s mean–variance framework: A review of literature. Fuzzy Optimization and Decision Making, 17(2):125–158, Jun 2018. 10.1007/s10700-017-9266-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa902114-6340-4cbb-bbf4-ae88a822be09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.