Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The gold extraction from Malaysian mesothermal lode gold ore through the cyanidation method was performed. The effect of hydrogen peroxide (H2O2) and lead nitrate Pb(NO3)2 were investigated on the percentage of gold recovery. The statistical analysis method using a response surface design-central composite design was applied to find the optimum condition for gold extraction. The studied parameters were NaCN concentration (300-500 ppm), H2O2 concentration (205-410 ppm), and Pb(NO3)2 concentration (50-150 ppm). It was found that increasing the amount of NaCN and H2O2 as well as decreasing the amount of Pb(NO3)2 in the studied range, increased the gold recovery. The analysis of variance suggested the linear model for the gold extraction with the optimum condition at 467.3 ppm NaCN, 94.96 ppm Pb(NO3)2, and 340 ppm H2O2. The gold extracted from the ore at the optimum condition was 88.97% as compared to 62.02% from conventional cyanidation. The characterization study of the gold ore indicated that the finely gold particles interlocked in the aluminosilicate phase (grain size of ~10.0 μm). The Van’t Hoff differential method justified that the cyanidation was of second order with a specific reaction rate of 0.0501/hour.
Rocznik
Tom
Strony
905--918
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Ali Yaraghi, Norazharuddin Shah Abdullah, Teuku Andika Rama Putra, Suhaina Ismail School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia, 14300
autor
- Ali Yaraghi, Norazharuddin Shah Abdullah, Teuku Andika Rama Putra, Suhaina Ismail School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia, 14300
autor
- Ali Yaraghi, Norazharuddin Shah Abdullah, Teuku Andika Rama Putra, Suhaina Ismail School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia, 14300
autor
- Ali Yaraghi, Norazharuddin Shah Abdullah, Teuku Andika Rama Putra, Suhaina Ismail School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia, 14300
Bibliografia
- AYLMORE M.G., 2001. Treatment of a refractory gold—copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Miner. Eng. 14, 615-637.
- ASLAN, N., 2007. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol. 185, 80-86.
- ASADOLLAHZADEH, M., TAVAKOLI, H., TORAB-MOSTAEDI, M., HOSSEINI, G., HEMMATI, A., 2014. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersivesolidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples. Talanta. 123, 25-31.
- BREUER, P.L., JEFFREY, M.I., HEWITT, D.M., 2008. Mechanisms of sulfide ion oxidation during cyanidation. Part I: The effect of lead (II) ions. Miner. Eng. 21, 579–586.
- CELEP, O., ALP, I., DEVEC, H., VICIL, M., 2009. Characterization of refractory behaviour of complex gold/silver ore by diagnostic leaching. Trans. NonFerrous Met. Soc. China. 19, 707-713.
- DE ANDRADE LIMA, L.R.P., HODOUIN, D., 2005. Optimization of reactor volumes for gold cyanidation. Miner. Eng. 18, 671–679.
- DESCHÊNES, G., WALLINGFORD, G., 1995. Technical Note: Effect of oxygen and lead nitrate on the cyanidation of a sulphide bearing gold ore. Miner. Eng. 8, 923-931.
- DESCHÊNES, G., ROUSSEAU, M., TARDIF, J., PRUD’HOMME, P.J.H., 1998. Effect of the composition of some sulphide minerals on cyanidation and use of lead nitrate and oxygen to alleviate their impact. Hydrometallurgy. 50, 205-221.
- DESCHÊNES, G., LASTRA, R., BROWN, J.R., JINA, S., MAY, O., GHALI, E., 2000. Effect of lead nitrate on cyanidation of gold ores: progress on the study of the mechanisms. Miner. Eng. 13, 1263–1279.
- DESCHÊNES, G., XIA, C., FULTON, M., CABRI, L., PRICE, J., 2009. Evaluation of leaching parameters for a refractory gold ore containing aurostibite and antimony minerals: Part I – Central zone. Miner. Eng. 22, 799-808.
- DAI, X., BREUER, P.L., 2013. Leaching and electrochemistry of gold, silver and gold – silver alloys in cyanide solutions: Effect of oxidant and lead (II) ions. Hydrometallurgy. 133, 139-148.
- DING, Y., SARTAJ, M., 2016. Optimization of ammonia removal by ion-exchange resin using response surface methodology. Int. J. Environ. Sci. Te. 13, 985-994.
- ELLIS, S., SENANAYAKE, G., 2004. The effects of dissolved oxygen and cyanide dosage on gold extraction from a pyrrhotiterich ore. Hydrometallurgy. 72, 39-50.
- ESMKHANI, R., GHOBADI, B., AMIRKHANI, A., REZADUST, S., 2013. Yhe effect of increasing capacity on gold recovery and optimization of cyanidation parameters in Aghdarreh gold ore plant. Aust. J. Basic & Appl. Sci. 7, 702-708.
- OFORI-SARPONG, G., OSSEO-ASARE, K., 2013. Preg-robbing of gold from cyanide and non-cyanide complexes: Effect of fungi pretreatment of carbonaceous matter. Int. J. Miner. Process. 119, 27-33.
- GUZMAN, L., SEGARRA, M., CHIMENOS, J.M., Fernandez, M.A., Espiell, F., 1999. Gold cyanidation using hydrogen peroxide. Hydrometallurgy. 52, 21-35.
- IM, J-K., CHO, I-H., KIM, S.K., ZOH, K.D., 2012. Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination. 285, 306-314.
- KONDOS, P.D., GRIFFITH, W.F., JARA, J.O., 1996. The Use of Oxygen in Gold Cyanidation. Can. Metall. Q. 35, 39-45.
- KARIMI, P., ABDOLLAHI, H., AMINI, A., NOAPARAST, M., SHAFAEI, S.Z., HABASHI, F., 2010. Cyanidation of gold ores containing copper, silver, lead, arsenic and antimony. Int. J. Miner. Process. 95, 68-77.
- LA BROOY, S.R., LINGE, H.G., WALKER, G.S., 1994. Review of gold extraction from ores. Miner. Eng. 7, 1213-1214.
- LIU, G.Q., YEN, W.T., 1995. Effects of sulphide minerals and dissolved oxygen on the gold and silver dissolution in cyanide solution. Miner. Eng. 8, 111-123.
- LIU, W.W., AZIZ, A., CHAI, S.P., MOHAMED, A.R., TYE, C.T., 2011. Optimisation of reaction conditions for the synthesis of single–walled carbon nanotubes using response surface methodology. Can. J. Chem. Eng. 90, 1-17.
- MULAR, A.L., HALBE, D.N., BARRATT, D.J., 2002. Mineral Processing Plant Design, Practice and Control Proceedings, first ed. Society for Mining, Metallurgy and Exploration Inc., Littleton.
- MARSDEN, J.O., HOUSE, C.I., 2006. The chemistry of gold extraction. Society for Mining, Metallurgy, and Exploration Inc., Littleton.
- MAHMOODI, A., NOAPARAST, M., ASLANI, S., GHORBANI, A., 2010. The Arghash Gold Ore Sample Treatment. Iran. J. Sci. Technol. B., 34, 577-589.
- ONG, P.L., BAHARUN, N., ISMAIL, S., 2015. Characterization and process optimization in the extraction of gold. Adv. Mat. Res. 1087, 236-240.
- REES, K.L., VAN Deventer, J.S.J., 2000. Preg-robbing phenomena in the cyanidation of sulphide gold ores. Hydrometallurgy. 58, 61-80.
- SENANAYAKE, G., 2004. Gold leaching in non-cyanide lixiviant systems: critical issues on fundamentals and applications. Miner. Eng. 17, 785-801.
- SENANAYAKE, G., 2005. Short Review: Kinetics and reaction mechanism of gold cyanidation: surface reaction model via Au(I)–OH–CN complexes. Hydrometallurgy. 80, 1-12.
- SHRITHAMMAVUT, W., 2008. Modelling of gold cyanidation, Master of Science Thesis, Lappeenranta University of Technology, Finland.
- UPADHYAYA, G.S., DUBE, R.K., 1977. Problems in metallurgical thermodynamics and kinetics’, first ed. Pergamon Press, Great Britain.
- UM, B.H., BAE, S.H., 2011. Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse. Korean J. Chem. Eng. 28, 1172-1176.
- YANG, Y-b., LI, Q., JIANG, T., GUO, Y-f., LI, G-h., XU, B., 2010. Co-intensification of gold leaching with heavy metals and hydrogen peroxide. Trans. Nonferrous Metals Soc. China. 20, 903-909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa8918c6-e5e9-4dfc-8eea-014c012a64e8