PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated detection of abnormal heart sound signals using Fano-factor constrained tunable quality wavelet transform

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manual interpretation of heart sounds is insensitive and prone to subjectivity. Automated diagnosis systems incorporating artificial intelligence and advanced signal processing tools can potentially increase the sensitivity of disease detection and reduce the subjectiveness. This study proposes a novel method for the automated binary classification of heart sound signals using the Fano-factor constrained tunable quality wavelet transform (TQWT) technique. Optimal TQWT based decomposition can reveal significant information in subbands for the reconstruction of events of interest. While transforming heart sound signals using TQWT, the Fano-factor is applied as a thresholding parameter to select the subbands for the clinically relevant reconstruction of signals. TQWT parameters and threshold of the Fanofactor are tuned using a genetic algorithm (GA) to adapt to the underlying optimal detection performance. The time and frequency domain features are extracted from the reconstructed signals. Overall 15 unique features are extracted from each sub-frame resulting in a total feature set of 315 features for each epoch. The resultant features are fed to Light Gradient Boosting Machine model to perform binary classification of the heart sound recordings. The proposed framework is validated using a ten-fold cross-validation scheme and attained sensitivity of 89.30%, specificity of 91.20%, and overall score of 90.25%. Further, synthetic minority over-sampling technique (SMOTE) is applied to produce balanced data set which yielded sensitivity and specificity of 86.32% and 99.44% respectively and overall score of 92.88%. Our developed model can be used in digital stethoscopes to automatically detect abnormal heart sounds and aid the clinicians in their diagnosis.
Twórcy
  • Department of Electronics and Communication Engineering, National Institute of Technology Goa, Goa 403401, India
  • Department of Electronics and Communication Engineering, National Institute of Technology Goa, Goa 403401, India
  • Department of Electronics and Communication Engineering, National Institute of Technology Goa, Goa 403401, India
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; International Research Organization for Advanced Science and Technology (IROAST)Kumamoto University, Kumamoto, Japan
Bibliografia
  • [1] Organization WH, et al. Noncommunicable diseases country profiles; 2018;2018.
  • [2] Mandal S, Basak K, Mandana K, Ray AK, Chatterjee J, Mahadevappa M. Development of cardiac prescreening device for rural population using ultralow-power embedded system. IEEE Trans Biomed Eng 2010;58(3):745–9.
  • [3] Nielsen T, Mølgaard H, Ringsted C, Eika B. The development of a new cardiac auscultation test: how do screening and diagnostic skills differ? Med Teacher 2010;32(1):56–61.
  • [4] Mangione S. Cardiac auscultatory skills of physicians-intraining: a comparison of three English-speaking countries. Am J Med 2001;110(3):210–6.
  • [5] Kumar AK, Saha G. Improved computerized cardiac auscultation by discarding artifact contaminated pcg signal sub-sequence. Biomed Signal Process Control 2018;41:48–62.
  • [6] Hamidi M, Ghassemian H, Imani M. Classification of heart sound signal using curve fitting and fractal dimension. Biomed Signal Process Control 2018;39:351–9.
  • [7] Humayun AI, Khan M, Ghaffarzadegan S, Feng Z, Hasan T, et al. An ensemble of transfer, semi-supervised and supervised learning methods for pathological heart sound classification; 2018, arXiv:180606506 (arXiv preprint).
  • [8] Li J, Ke L, Du Q, Ding X, Chen X, Wang D. Heart sound signal classification algorithm: a combination of wavelet scattering transform and twin support vector machine. IEEE Access 2019;7:179339–48.
  • [9] Humayun AI, Ghaffarzadegan S, Ansari MI, Feng Z, Hasan T. Towards domain invariant heart sound abnormality detection using learnable filterbanks. IEEE J Biomed Health Inform 2020.
  • [10] Springer DB, Tarassenko L, Clifford GD. Logistic regressionhsmm-based heart sound segmentation. IEEE Trans Biomed Eng 2015;63(4):822–32.
  • [11] Noman F, Salleh SH, Ting CM, Samdin SB, Ombao H, Hussain H. A markov-switching model approach to heart sound segmentation and classification. IEEE J Biomed Health Inform 2019;24(3):705–16.
  • [12] Varghees VN, Ramachandran K. Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope. IEEE Sens J 2017;17(12):3861–72.
  • [13] Chandra B, Sastry CS, Jana S, Patidar S. Atrial fibrillation detection using convolutional neural networks. 2017 Computing in Cardiology (CinC); 2017. pp. 1–4.
  • [14] Xiao B, Xu Y, Bi X, Zhang J, Ma X. Heart sounds classification using a novel 1-d convolutional neural network with extremely low parameter consumption. Neurocomputing 2020;392:153–9.
  • [15] Messner E, Zöhrer M, Pernkopf F. Heart sound segmentation – an event detection approach using deep recurrent neural networks. IEEE Trans Biomed Eng 2018;65 (9):1964–74.
  • [16] Zhang W, Han J, Deng S. Heart sound classification based on scaled spectrogram and partial least squares regression. Biomed Signal Process Control 2017;32:20–8.
  • [17] Whitaker BM, Suresha PB, Liu C, Clifford GD, Anderson DV. Combining sparse coding and time-domain features for heart sound classification. Physiol Meas 2017;38(8):1701.
  • [18] Bozkurt B, Germanakis I, Stylianou Y. A study of timefrequency features for CNN-based automatic heart sound classification for pathology detection. Comput Biol Med 2018;100:132–43.
  • [19] Zhang W, Han J, Deng S. Abnormal heart sound detection using temporal quasi-periodic features and long short-term memory without segmentation. Biomed Signal Process Control 2019;53:101560.
  • [20] Yuenyong S, Nishihara A, Kongprawechnon W, Tungpimolrut K. A framework for automatic heart sound analysis without segmentation. Biomed Eng Online 2011;10 (1):13.
  • [21] Zabihi M, Rad AB, Kiranyaz S, Gabbouj M, Katsaggelos AK. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 613–6.
  • [22] Dominguez-Morales JP, Jimenez-Fernandez AF, Dominguez-Morales MJ, Jimenez-Moreno G. Deep neural networks for the recognition and clssification of heart murmurs using neuromorphic auditory sensors. IEEE Trans Biomed Circuits Syst 2017;12(1);24-34.
  • [23] Patidar S, Pachori RB. Segmentation of cardiac sound signals by removing murmurs using constrained tunable-q wavelet transform. Biomed Signal Process Control 2013;8 (6):559–67.
  • [24] Jain PK, Tiwari AK. A robust algorithm for segmentation of phonocardiography signal using tunable quality wavelet transform. J Med Biol Eng 2018;38(3):396–410.
  • [25] Patidar S, Pachori RB. Classification of cardiac sound signals using constrained tunable-q wavelet transform. Expert Syst Appl 2014;41(16):7161–70.
  • [26] Zhang W, Han J, Deng S. Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Syst Appl 2017;84:220–31.
  • [27] Alonso-Arévalo MA, Cruz-Gutiérrez A, Ibarra-Hernández RF, García-Canseco E, Conte-Galván R. Robust heart sound segmentation based on spectral change detection and genetic algorithms. Biomed Signal Process Control 2021;63:102208.
  • [28] Kleć M. Early detection of heart symptoms with convolutional neural network and scattering wavelet transformation. International Symposium on Methodologies for Intelligent Systems. Springer; 2018. p. 24–31.
  • [29] Selesnick IW. Wavelet transform with tunable q-factor. IEEE Trans Signal Process 2011;59(8):3560–75.
  • [30] Nishad A, Pachori RB, Acharya UR. Application of tqwt based filter-bank for sleep apnea screening using ecg signals. J Ambient Intell Humaniz Comput 2018;1–12.
  • [31] Patidar S, Pachori RB, Upadhyay A, Acharya UR. An integrated alcoholic index using tunable-q wavelet transform based features extracted from eeg signals for diagnosis of alcoholism. Appl Soft Comput 2017;50:71–8.
  • [32] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in eeg signals using tunable-q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 2016;137:247–59.
  • [33] Zeng W, Yuan J, Yuan C, Wang Q, Liu F, Wang Y. A new approach for the detection of abnormal heart sound signals using tqwt, vmd and neural networks. Artif Intell Rev 2020;1–35.
  • [34] Teich MC, Khanna SM. Pulse-number distribution for the neural spike train in the cat's auditory nerve. J Acoust Soc Am 1985;77(3):1110–28.
  • [35] Fano U. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev 1947;72(1):26.
  • [36] Teich MC, Lowen SB, Jost BM, Vibe-Rheymer K, Heneghan C. Heart rate variability: measures and models. Nonlinear Biomed Signal Process 2001;2:159–213.
  • [37] Rubin J, Abreu R, Ganguli A, Nelaturi S, Matei I, Sricharan K. Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 813–6.
  • [38] Patidar S, Pachori RB, Garg N. Automatic diagnosis of septal defects based on tunable-q wavelet transform of cardiac sound signals. Expert Syst Appl 2015;42(7):3315–26.
  • [39] Giannakopoulos T, Pikrakis A. Introduction to audio analysis: a MATLAB® approach. Academic Press; 2014.
  • [40] Sharma G, Umapathy K, Krishnan S. Trends in audio signal feature extraction methods. Appl Acoust 2020;158:107020.
  • [41] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: a highly efficient gradient boosting decision tree. Advances in neural information processing systems. 2017;3146–54.
  • [42] Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas 2016;37(12):2181.
  • [43] Bentley P, Nordehn G, Coimbra M, Mannor S. The PASCAL classifying heart sounds challenge 2011 (CHSC2011) results; 2011, http://www.peterjbentley.com/heartchallenge/index.html.
  • [44] Brochu E, Cora VM, De Freitas N. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning; 2010, arXiv:10122599 (arXiv preprint).
  • [45] Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 2012;25:2951–9.
  • [46] Feng W, Dauphin G, Huang W, Quan Y, Bao W, Wu M, et al. Dynamic synthetic minority over-sampling techniquebased rotation forest for the classification of imbalanced hyperspectral data. IEEE J Sel Topics Appl Earth Obs Remote Sens 2019;12(7):2159–69.
  • [47] Ibarra-Hernández RF, Bertin N, Alonso-Arévalo MA, Guillén-Ramírez HA. A benchmark of heart sound classification systems based on sparse decompositions. 14th International Symposium on Medical Information Processing and Analysis, vol. 10975. International Society for Optics and Photonics; 2018. p. 1097505.
  • [48] Wu JMT, Tsai MH, Huang YZ, Islam SH, Hassan MM, Alelaiwi A, et al. Applying an ensemble convolutional neural network with savitzky-golay filter to construct a phonocardiogram prediction model. Appl Soft Comput 2019;78:29–40.
  • [49] Baydoun M, Safatly L, Ghaziri H, El Hajj A. Analysis of heart sound anomalies using ensemble learning. Biomed Signal Process Control 2020;62:102019.
  • [50] Xiao B, Xu Y, Bi X, Zhang J, Ma X. Heart sounds classification using a novel 1-d convolutional neural network with extremely low parameter consumption. Neurocomputing 2019.
  • [51] Das S, Pal S, Mitra M. Supervised model for cochleagram feature based fundamental heart sound identification. Biomed Signal Process Control 2019;52:32–40.
  • [52] Kay E, Agarwal A. Dropconnected neural network trained with diverse features for classifying heart sounds. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 617–20.
  • [53] Homsi MN, Medina N, Hernandez M, Quintero N, Perpiñan G, Quintana A, et al. Automatic heart sound recording classification using a nested set of ensemble algorithms. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 817–20.
  • [54] Clifford GD, Liu C, Moody B, Springer D, Silva I, Li Q, et al. Classification of normal/abnormal heart sound recordings: the physionet/computing in cardiology challenge 2016. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 609–12.
  • [55] Potes C, Parvaneh S, Rahman A, Conroy B. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. 2016 Computing in Cardiology Conference (CinC); 2016. pp. 621–4.
  • [56] Deng M, Meng T, Cao J, Wang S, Zhang J, Fan H. Heart sound classification based on improved mfcc features and convolutional recurrent neural networks. Neural Netw 2020.
  • [57] Gomes EF, Pereira E. Classifying heart sounds using peak location for segmentation and feature construction. Workshop Classifying Heart Sounds; 2012. pp. 480–92.
  • [58] Deng Y, Bentley PJ. A robust heart sound segmentation and classification algorithm using wavelet decomposition and spectrogram. Workshop Classifying Heart Sounds; 2012. pp. 1–6.
  • [59] Pikrakis A, Giannakopoulos T, Theodoridis S. A computationally efficient speech/music discriminator for radio recordings. ISMIR. 2006. pp 107-10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa845ad9-8389-4db5-a52b-34ceb07924b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.