PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of austenitization temperature on phase transformations of supercooled austenite in low-alloy steels with high resistance to abrasion wear

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents continuous cooling transformation (CCT) diagram of selected low-alloy steel with high resistance to abrasion. Samples were prepared from examined material in as delivered conditions, then were austenitized at 900, 1000, 1100 and 1200 °C for 20 min, and then cooled with the rates of V800–500 = 50, 10, 5, 1, 0.5, 0.1 °C/s. During the dilatometric research, the critical temperatures were defined as well as the critical points specified for different cooling rates were designated. In addition, metallographic documentation of received microstructures after dilatometric investigations was prepared and hardness measurement was performed. The increase in the austenitizing temperature caused changes in the temperature of MS and in the size of the martensite laths. What is more, the increase in the austenitizing temperature in the case of the analyzed steel caused a displacement of the bainitic and diffusion transformations to longer times. During the analysis using the TEM and SEM it was found that the size of the austenite grains is largely controlled by precipitates of the nitrides of AlN, TiN and carbides, mainly Cr7C3 and M23C6.
Rocznik
Strony
413--429
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
  • Department of Materials Science, Welding and Strength of Materials, Wrocław University of Technology, 50-370 Wrocław, Poland
autor
  • Department of Physical Metallurgy and Powder Metallurgy, AGH University of Science and Technology, 30-059 Kraków, Poland
autor
  • Department of Materials Science, Welding and Strength of Materials, Wrocław University of Technology, 50-370 Wrocław, Poland
autor
  • Department of Physical Metallurgy and Powder Metallurgy, AGH University of Science and Technology, 30-059 Kraków, Poland
Bibliografia
  • [1] P. Kostencki, B. Łętkowska, R. Nowowiejski, Polowe badania odporności na zużycie ścierne lemieszy podłużnych wykonanych ze stali z dodatkiem boru, Tribologia 44 (3) (2013) 49–79.
  • [2] L. Cegiel, Ł. Konat, T. Pawłowski, G. Pękalski, Stale Hardox – nowe generacje materiałów konstrukcyjnych maszyn górnictwa odkrywkowego, Węgiel Brunatny 3 (56) (2006) 73–76.
  • [3] K. Pawlak, B. Białobrzeska, Ł. Konat, The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel, ACME 16 (4) (2016) 913–926.
  • [4] B. Białobrzeska, Ł. Konat, R. Jasiński, The influence of austenite grain size on the mechanical properties of low-alloy steel with boron, Metals 7 (1) (2017) 1–20.
  • [5] J. Kupczyk, A.K. Lis, Wpływ boru na kinetykę przemian fazowych stali 1021, in: 12th International Scientific Conference, Achievements in Mechanical and Materials Engineering, 2004.
  • [6] K. Yamanaka, Y. Ohmori, Effect of boron on transformation of low-carbon low-alloy steel, ISIJ Int. 13 (1977) 92–101.
  • [7] Y. Weng (Ed.), Ultra-fine Grained Steel, Springer/Metallurgical Industry Press, Beijing, 2009.
  • [8] Manufacturer's data. http://www.ssab.com/Global/HARDOX/ Datasheets/en/168_HARDOX_450_UK_Data%20Sheet.pdf (accessed 02.03.15).
  • [9] L.A. Dobrzański, Podstawy Nauki o Materiałach i Metaloznawstwo, WNT, Warsaw, 2003.
  • [10] J.R. Strife, M.J. Carr, G.S. Ansell, The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe–Ni–Cr–C alloys, Metall. Trans. A 8 (9) (1977) 1471–1484.
  • [11] V. Raghavan, in: G.B. Olson, W.S. Owen (Eds.), Martensite Attribute to Morris Cohen, ASM International, Materials Park, USA, 1992 197–226.
  • [12] K. Tsuzaki, S. Fukasaku, Y. Tomota, T. Maki, Effect of prior deformation of austenite on the [...] martensitic Transformation in Fe–Mn alloys, JIM 32 (1991) 222–228.
  • [13] V. Ranhavanin, Martensite, A Tribute to Morris Cohen, ASM International, Materials Park, 1992, pp. 197–226.
  • [14] J. Pacyna, Design the Chemical Composition of Steels, AGH University of Science and Technology, Kraków, 1997.
  • [15] G. Krauss, Steels, Processing, Structure, and Performance, ASM International, 2005.
  • [16] S.J. Lee, J.S. Park, Y.K. Lee, Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel, Scripta Mater. 59 (1) (2008) 87–90.
  • [17] R. Haimann, Metaloznawstwo cz. 2, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1980.
  • [18] P.J. Brofman, G.S. Ansell, The effect of fine grain size on the Ms temperature in Fe–27Ni–0.025C alloys, Metall. Trans. A 14A (1983) 1929–1931.
  • [19] S.J. Lee, Y.K. Lee, Effect of austenite grain size on martensitic transformation of a low alloy steel, Mater. Sci. Forum 475–479 (2005) 3169–3170.
  • [20] J. Huang, Z. Xu, Effect of dynamically recrystallized austenite on the martensite start temperature of martensitic transformation, Mater. Sci. Eng. A 438–440 (2006) 254–257.
  • [21] G.S. Ansell, P.J. Brofman, T.J. Nichol, G. Judd, Effect of austenite strength on the transformation to martensite in Fe–Ni and Fe–Ni–C alloys, in: G.B. Olson, M. Cohen (Eds.), International Conference on Martensitic Transformations ICOMAT'79, 1979, 350–355.
  • [22] A. Garcia-Junceda, C. Capdevila, F.G. Caballero, C. Garcia de Andres, Dependence of martensite start temperature on fine austenite grain size, Scripta Mater. 58 (2) (2008) 134–137.
  • [23] T. Hanamura, S. Torizuka, S. Tamura, S. Enokida, H. Takechi, Effect of austenite grain size on transformation behavior. Microstructure and mechanical properties of 0.1C–5Mn martensitic steel, ISIJ Int. 12 (53) (2013) 2218–2225.
  • [24] S. Morito, H. Saito, T. Ogawa, T. Furuhara, T. Maki, Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels, ISIJ Int. 1 (45) (2005) 91–94.
  • [25] J. Gyhlesten Back, G. Engberg, Investigation of parent austenite grains from martensite structure using EBSD in a wear resistant steel, Materials 10 (453) (2017).
  • [26] T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997.
  • [27] J. Adamczyk, Engineering of Metallic Materials, The Silesian University of Technology Publishers, Gliwice, 2004(in Polish).
  • [28] H. Adrian, Thermodynamic calculations of carbonitride precipitations as a guide for alloy design of microalloyed steels, in: Proceedings of the International Conference Microalloyed'95, Iron and Steel Soc., Pittsburg, PA, (1995) 285–305.
  • [29] K. Xu, Multiphase particle-seze-grouping model of precipitation and its application to thermal processing of mucrosalloyed steel, Dissertation, Urbana, Illinois, 2012.
  • [30] F.G. Wilson, T. Gladman, Aluminium nitride in steel, Int. Mater. Rev. 33 (1) (1988) 221–286.
  • [31] M. Opiela, Analysis of the kinetics of precipitation of MX-type interstitial phases in microalloyed steels, JAMME 47 (1) (2011) 7–18.
Uwagi
EN
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa828c8b-9fcc-44e8-a2cf-234b7713e9dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.