Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents calculations results of thermal consolidation process of the porous medium with the rheological Kelvin–Voigt skeleton, obtained numerically with the use of Flex.PDE software. The investigated calculation scheme consisted of the porous column filled with a liquid. The vertical load was applied to the top surface of the column through a porous plate allowing the free flow of liquid through this surface. Numerical solution is based on compression of the sample at appropriately defined boundary conditions. The aim of this study was to describe the influence of external load and temperature gradient on the deformation tests progress at different values of three parameters: λ, rs and cv . The results obtained, in the context of further research, can also be used for the determination of the influence of other parameters of the state and model parameters on the process of thermo poroelasticity of Biot model with rheological skeleton.
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--35
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Wrocław University of Technology, Institute of Mining, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Technology, Institute of Geotechnics and Hydrotechnics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] AURIAULLT J.L., Dynamic behaviour of porous media, Transport Processes in Porous Media, Kluver Academic Publishers, 1991, 471–519.
- [2] AURIAULT J.L., SANCHEZ PALENCIA E., Etude de comportement macroscopique d'un milieu poreuxsature deformable, Journal de Mecanique, 1977b, 16(4), 575–603.
- [3] AURIAULT J.L., STRZELECKI T., BAUER J., HE S., Porous deformable media by a very compressibleFluid, Eur. J. Mech. a/Solid, 1990, 9, 4, 373–392.
- [4] BARTLEWSKA-URBAN M., STRZELECKI T., One-dimensional consolidation of the porous medium withthe rheological Kelvin–Voigt skeleton, Studia Geotechnica et Mechanica, 2008, Vol. 30, No. 1/2,115–122.
- [5] BARTLEWSKA M., The doctoral dissertation on the theme: Określenie parametrów efektywnychmodeli reologicznych gruntów spoistych, Politechnika Wrocławska, Faculty of Geoengineering,Mining and Geology, Wrocław, 2009.
- [6] BARTLEWSKA M., STRZELECKI T., Equations of Biots consolidation with Kelvin–Voight rheologicalframe, Studia Geotechnica et Mechanica, 2009, Vol. XXXI, No. 2, 3–15.
- [7] BARTLEWSKA M., STRZELECKI T., One-dimensional consolidation of the porous medium with theRheological Kelvin–Voight skeleton, Studia Geotechnica et Mechanica, 2008, Vol. XXX,No. 1–2.
- [8] BIOT M.A., General theory of three-dimensional consolidation, J. Appl. Phys., 1941, No. 12, 155.
- [9] BIOT M.A., General Solutions of the Equations of Elasticity and Consolidation of a Porous Material, J. Appl. Mech., 1956, 23.
- [10] BENSOUSSAN A., LIONS J.L., PAPANICOLAU G., Asymptotic analysis for periodic structures, NorthHolland Publishing Company, Amsterdam, 1978.
- [11] COUSSY O., Mechanics of Porous Continua, John Wiley & Sons, 1995.
- [12] COUSSY O., Mechanics and physics of porous solids, John Wiley & Sons, 2011.
- [13] KISIEL I., DERSKI W., IZBICKI R.J., MRÓZ Z., Mechanika skał i gruntów, series Mechanika Techniczna, Vol. VII, PWN, Warszawa, 1982.
- [14] KISIEL I., Reologiczne równania stanu ośrodków quasiliniowych, Polish Academy of Sciences,Wrocław Branch, Wrocław, 1980.
- [15] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of FluidSaturated Porous Materials, J. Theoretical and Applied Mechanics, 1998, 36, 3.
- [16] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of FluidSaturated Porous Materials, J. Theoretical and Applied Mechanics, 1998, 36, 3.
- [17] KOWALSKI S.J., MUSIELAK G., Drying Processes in Aspect of the Theory of the Fluid Saturated Porous Materials, Proceedings of the Fifth International Conference on Composities Engineering, ICCE/5, ed. D. Hui, 1998, 487–488.
- [18] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Theory of Drying Processes as an Aspect of Poromechanics, “Poromechanics – A Tribute to Maurice A. Biot”, ed. J.F. Thimus et al., 433–437, A.A. Balkema, Roterdam/Brookfield, 1998.
- [19] KRÖNER E., Effective elastic moduli of periodic and random media: a unification, Mechanics Research Communication, 1980, 7(5), 323–327.
- [20] REINER M., Deformation, strain and flow, H. K. Lewis, London, 1960.
- [21] RUBINSTEIN J., TORQUATO S., Flow and random porous media: mathematical formulation, variational principles and rigorous bounds, J. Fluid Mech., 1989, 206, 25–46.
- [22] SANCHEZ-PALENCIA E., Non homogeneous Media and Vibration Theory, Lecture Notes in Phisics, 127, Springer-Verlag, Berlin, 1980.
- [23] STRZELECKI T., Loi de comportement dans la theorie de la consolidation electrohydrodynamique, Stud. Geotech., 1979, Vol. 1, No. 3/4.
- [24] STRZELECKI T., Model termokonsolidacji gruntów ilastych z uwzględnieniem procesów elektrokinetycznych, Współczesne problemy naukowo badawcze budownictwa lądowego i wodnego, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2007.
- [25] STRZELECKI T., KOSTECKI S., ŻAK S., Modelowanie przepływów przez ośrodki porowate, Dolnośląskie Wydawnictwo Edukacyjne, 2008.
- [26] SZEFER G., Non-linear Problems of consolidations theory, Mat. III Kolokwium PolskoFrancuskiego, 22–24 kwietnia 1980.
- [27] STRZELECKI T., BARTLEWSKA-URBAN M., Numerical calculations of the consolidation of flotation waste landfill “Żelazny Most” based on Biot’s model with the Kelvin–Voight rheological skeleton, Archives of Civil Engineering, Archives of Civil Engineering, 2011, Vol. 57, Iss. 2, 199–213.
- [28] Flex PDE v.6: www.pdesolutions.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa7fd39b-0d37-414f-aad0-03b4de2c54c3