PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania skuteczności adsorpcji 2,4,6-trichlorofenolu z modelowych roztworów wodnych na wybranych trocinach

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Efficacy assessment of 2,4,6-trichlorophenol adsorption on sawdust from model water solutions
Języki publikacji
PL
Abstrakty
PL
Celem pracy była ocena przydatności trocin do usuwania 2,4,6-trichlorofenolu (TCP) z wody. Do badań wybrano cztery biosorbenty pochodzące z drewna dębowego, olchowego, wiśniowego i sosnowego. Zbadano wpływ dawki trocin, pH roztworu oraz siły jonowej na skuteczność usuwania TCP z modelowego roztworu wodnego. Do opisu kinetyki adsorpcji zastosowano równania pseudo I i pseudo II rzędu, wykazując, że kinetyka przebiegała zgodnie z modelem pseudo II rzędu. Izotermy adsorpcji TCP na trocinach w warunkach równowagowych opisano równaniami Freundlicha, Langmuira, Langmuira-Freundlicha oraz Sipsa. Wykazano, że TCP był najskuteczniej usuwany na trocinach dębowych, podczas gdy najgorszym adsorbentem okazały się trociny sosnowe. Uzyskane wyniki pokazały, że trociny mogą być skutecznym i tanim adsorbentem do usuwania chlorofenolu z wody. Można je wykorzystać np. do tworzenia barier ochronnych oraz ekranów ograniczających przenikanie i migrację zanieczyszczeń organicznych do wód powierzchniowych i podziemnych.
EN
The aim of this study was to evaluate the usefulness of sawdust for 2,4,6-trichlorophenol (TCP) removal from water. Four different wood-derived biosorbents, namely oak, alder, cherry and pine sawdust, were selected for experiments. Effect of the sorbent dose, solution pH and ionic strength on efficacy of TCP removal from a model solution was investigated. The adsorption kinetic data were analyzed using the pseudo-first and pseudo-second order models, demonstrating the latter to represent the adsorption kinetics. The isotherms of TCP adsorption on the sawdust were fitted against the Langmuir, Freundlich, Langmuir-Freundlich and Sips equations. It was demonstrated that the oak sawdust removed TCP most efficiently, while the pine sawdust was the worst sorbent. The results revealed that sawdust might be an efficient low cost adsorbent for chlorophenol removal from water. It may be employed e.g. in protective barriers and shields limiting organic contaminant penetration and diffusion into surface and groundwater.
Czasopismo
Rocznik
Strony
19--24
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. S. Kaliskiego 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • 1. A. DĄBROWSKI, P. PODKOŚCIELNY, Z. HUBICKI, M. BARCZAK: Adsorption of phenolic compounds by activated carbon – a critical review. Chemosphere 2005, Vol. 58, pp. 1049–1070.
  • 2. S.H. LIN, R.S. JUANG: Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management 2009, Vol. 90, pp. 1336–1349.
  • 3. K.Y. FOO, B.H. HAMEED Detoxification of pesticide waste via activated carbon adsorption process. Journal of Hazardous Materials 2010, Vol. 175, pp. 1–11.
  • 4. M. L. SOTO, A. MOURE, H. DOMINGUEZ, J. C. PARAJO: Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering 2011, Vol. 105, pp. 1–27.
  • 5. I. ALI, M. ASIM, T.A. KHAN: Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management 2012, Vol. 113, pp. 170–183.
  • 6. Z. AKSU, J. YENER: A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Management 2001, Vol. 21, pp. 695–702.
  • 7. B. YU, Y. ZHANG, A. SHUKLA, S.S. SHUKLA, K.L. DORRIS: The removal of heavy metals from aqueous solutions by sawdust adsorption – removal of lead and comparison of its adsorption with copper. Journal of Hazardous Materials 2001, Vol. B84, pp. 83–94.
  • 8. M.H. BAKI, F. SHEMIRANI, R. KHANI: Potential of sawdust as a green and economical sorbent for simultaneous preconcentration of trace amounts of cadmium, cobalt, and lead from water, biological, food, and herbal samples. Journal of Food Science 2013, Vol. 78, No. 5, pp. T797–T804.
  • 9. A. WITEK-KROWIAK: Application of beech sawdust for removal of heavy metals from water: Biosorption and desorption studies. European Journal of Wood and Wood Products 2013, Vol. 71, pp. 227–236.
  • 10. N. KIM, M. PARK, D. PARK: A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresource Technology 2015, Vol. 175, pp. 629–632.
  • 11. M. ÖZACAR, I.A. SENGIL: A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry 2005, Vol. 40, pp. 565–572.
  • 12. V. DULMAN, S.M. CUCU-MAN: Sorption of some textile dyes by beech wood sawdust. Journal of Hazardous Materials 2009, Vol. 162, pp. 1457–1464.
  • 13. A. WITEK-KROWIAK: Biosorption of malachite green from aqueous solutions by pine sawdust: Equilibrium, kinetics and the effect of process parameters. Desalination and Water Treatment 2013, Vol. 51, No. 16–18, pp. 3284–3294.
  • 14. H. WANG, X. YUAN, G. ZENG, L. LENG, X. PENG, K. LIAO, L. PENG, Z. XIAO: Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: Kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Environmental Science and Pollution Research 2014, Vol. 21, pp. 11552–11564.
  • 15. M. TOBISZEWSKI: Sorption of chlorinated solvents on pine and oak sawdust. 5th International Conference on Environmental Science and Technology IPCBEE 2014, Vol. 69, pp. 45–48.
  • 16. Y. ZHOU, P. LU, J. LU: Application of natural biosorbent and modified peat for bisphenol A removal from aqueous solutions. Carbohydrate Polymers 2012, Vol. 88, pp. 502–508.
  • 17. A.E. OFOMAJA: Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust. Industrial Crops and Products 2011, Vol. 33, pp. 418–428.
  • 18. A. DEYDA: Technologia drewna. Wydawnictwo REA, Warszawa 1999.
  • 19. U. DMITRUK, E. ZBIEĆ, J. DOJLIDO: Występowanie i oznaczanie chlorofenoli w środowisku wodnym (Chlorophenols in water environment). Ochrona Środowiska 2006, vol. 28, nr 3, ss. 25–28.
  • 20. J. MICHAŁOWICZ: The occurrence of chlorophenols, chlorocatechols and chlorinated methoxyphenols in drinking water of the largest cities in Poland. Polish Journal of Environmental Studies 2005, Vol. 14, pp. 327–333.
  • 21. O. HAMDAOUI, E. NAFFRECHOUX: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials 2007, Vol. 147, pp. 381–394.
  • 22. K. KUŚMIEREK, A. ŚWIĄTKOWSKI: Adsorpcja 2,4,6-trichlorofenolu na węglu aktywnym z roztworów woda-rozpuszczalnik organiczny. Przemysł Chemiczny 2014, vol. 93, nr 7, ss. 1101–1105.
  • 23. Y. ZHANG, R.G. MANCKE, M. SABELFELD, S.U. GEISSEN: Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone. Journal of Hazardous Materials 2014, Vol. 271, pp. 178–184.
  • 24. B.H. HAMEED: Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. Colloids and Surfaces A 2007, Vol. 307, pp. 45–52.
  • 25. G. CHEN, Y. WANG, Z. PEI: Adsorption and desorption of 2,4,6-trichlorophenol onto and from ash as affected by Ag+, Zn2+, and Al3+. Environmental Science and Pollution Research 2014, Vol. 21, pp. 2002–2008.
  • 26. S. ZHENG, Z. YANG, D.H. JO, Y.H. PARK: Removal of chlorophenols from groundwater by chitosan sorption. Water Research 2004, Vol. 38, pp. 2315–2322.
  • 27. K. KUŚMIEREK, L. DĄBEK, W. KAMIŃSKI, A. ŚWIĄTKOWSKI: Ocena przydatności torfu do usuwania chlorofenoli z wody (Evaluation of the usefulness of peat for removal of chlorophenols from water solutions). Ochrona Środowiska 2013, vol. 35, nr 2, ss. 51–55.
  • 28. A. DENIZLI, N. CIHANGIR, A.Y. RAD, M. TANER, G. ALSANCAK: Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochemistry 2004, Vol. 39, pp. 2025–2030.
  • 29. Y. LI, Y. DENG, B. CHEN: Sorption of chlorophenols onto fruit cuticles and potato periderm. Journal of Environmental Sciences 2012, Vol. 24, No. 4, pp. 675–681.
  • 30. C.H. GILES, T.H. MacEWAN, S.N. NAKHWA, D. SMITH: Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed) 1960, pp. 3973–3993.
  • 31. S. RANGABHASHIYAM, N. ANU, M.S. GIRI NANDAGOPAL, N. SELVARAJU: Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. Journal of Environmental Chemical Engineering 2014, Vol. 2, pp. 398–414.
  • 32. K. KUŚMIEREK, A. ŚWIĄTKOWSKI: The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes. Desalination and Water Treatment 2015, Vol. 56, No. 11, pp. 2807–2816.
  • 33. K. KUŚMIEREK, A. ŚWIĄTKOWSKI: Influence of pH on adsorption kinetics of monochlorophenols from aqueous solutions on granular activated carbon. Ecological Chemistry and Engineering S 2015, Vol. 22, No. 1, 95–105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa740094-60ec-4b7a-8df8-34bd5e1fee2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.