PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of Confined Explosions of Composite Explosives and Layered Charges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, the confined explosions of cylindrical homogeneous and layered charges composed of two different types of macroscopic granular multi-component RDX-based composites were investigated. These composites were obtained by the so-called “wet slurry method”. For comparison, charges consisting of simple mixtures instead of the composites, TNT and phlegmatized RDX (RDXph) were also studied. The effect of the following parameters: the structure of the macroscopic granular composite, the type of charge (cylindrical pressed material or layered with an RDXph core), oxygen availability (air or argon atmosphere) and the aluminium particle size, on the quasi-static pressure (QSP) measured inside a 150 dm3 explosion chamber was determined. Solid post-detonation residues from inside the explosion chamber were also collected and analyzed. A combination of all of these results enabled very important conclusions about aluminium combustion and behaviour during the explosion of composite and layered charges, to be drawn.
Rocznik
Strony
957--977
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Peuker J.M., Krier H., Glumac N., Particle Size and Gas Environment Effects on Blast and Overpressure Enhancement in Aluminized Explosives, Proc. Combust. Inst., 2013, 34, 2205-2212.
  • [2] Trzciński W.A., Maiz L., Thermobaric and Enhanced Blast Explosives – Properties and Testing Methods (Review), Propellants Explos. Pyrotech., 2015, 40(4), 632-644.
  • [3] Maiz L., Trzciński W.A., Szala M., Preparation and Testing of Thermobaric Composites, New Trends Res. Energ. Mater., Proc. Semin., 18th, Pardubice, Czech Republic, 2015, 705-715.
  • [4] Guirguis R.H., Reactively Induced Fragmenting Explosives, Patent US 6 846 372 B1, 2005.
  • [5] Newman K.E., Riffe V., Jones S.L., Lowell M.D., Thermobaric Explosives and Compositions, and Articles of Manufacture and Methods Regarding the Same, Patent US 7 754 036 B1, 2010.
  • [6] Baker J.J., Thermobaric Explosives, Articles of Manufacture, and Methods Comprising the Same, Patent US 7 807 000 B1, 2010.
  • [7] Sheridan E.W., Hugus G.D., Brooks G.W., Enhanced Blast Explosives, Patent US 7 998 290 B2, 2011.
  • [8] Nicolich S.M., Capellos C., BalasW.A., Akester J.D., Hatch R.L., High-blast Explosive Compositions Containing Particulate Metal, Patent US 8 168 016 B1, 2012.
  • [9] Trzciński W.A., Cudziło S., Paszula J., Studies of Free Field and Confined Explosions of Aluminium Enriched RDX Compositions, Propellants Explos. Pyrotech., 2007, 32(6), 502.
  • [10] Trzciński W.A., Cudziło S., Paszula J., Callaway J., Study of the Effect of Additive Particle Size On Non-ideal Explosive Performance, Propellants Explos. Pyrotech., 2008, 33(3), 227.
  • [11] Chan M.L., Meyers G.W., Advanced Thermobaric Explosive Compositions, Patent US 6 955 732 B1, 2005.
  • [12] Chan M.L., Bui D.T., Meyers G., Turner A., Castable Thermobaric Explosive Formulations, Patent US 6 969 434 B1, 2005.
  • [13] Trzciński W.A., Barcz K., Investigation of Blast Wave Characteristics for Layered Thermobaric Charges, Shock Waves, 2012, 22(2), 119.
  • [14] Trzciński W.A., Barcz K., Paszula J., Cudziło S., Investigation of Blast Performance and Solid Residues for Layered Thermobaric Charges, Propellants Explos. Pyrotech., 2014, 39(1), 40.
  • [15] Fried E., CHEETAH 1.39 – User’s Manual, Lawrence Livermore National Laboratory,1996.
  • [16] Fried L.E., Souers P.C., BKWC: an Empirical BKW Parametrization Based on Cylinder Test Data, Propellants Explos. Pyrotech., 1996, 21(4), 215.
  • [17] Ornellas D.L., The Heat and Products of Detonation of Cyclotetramethyletetranitamine, 2,4,6-Trinitrotoluene, Nitromethane, and Bis[2,2-dinitro-2-fluoroethyl]formal, J. Phys. Chem., 1968, 72, 2390.
  • [18] Ornellas D.L., Calorimetric Determination of the Heat and Products of Detonation for Explosives, Report UCRL 52821, Lawrence Livermore National Laboratory, 1982.
  • [19] Wolański P., Gut Z., Trzciński W.A., Szymańczyk L., Paszula J., Visualization of Turbulent Combustion of TNT Detonation Products in a Steel Vessel, Shock Waves, 2000, 10(2), 127-136.
  • [20] Trzciński W.A., Paszula J., Wolański P., Thermodynamic Analysis of Afterburning of Detonation Products in Confined Explosions, J. Energ. Mater., 2002, 20(3), 195.
  • [21] Kiciński W., Trzciński W.A., Calorimetry Studies of Explosion Heat of Non-ideal Explosives, J. Therm. Anal. Calorim., 2009, 96(2), 623.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa6fc3fb-92ee-4533-802f-0cf527209fda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.