PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil gas survey in and around Shanchiao fault of northern Taiwan for establishing continuous monitoring station

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study deals with the soil gas geochemical surveys in and around Shanchiao fault to pick the sites for integrated radon monitoring using SSNTDs to better understand the response of tectonic activity of the fault systems. Throughout these surveys, gathered samples of soil gas has been analysed for radon and carrier gases namely CO2, He, N2, O2, CH4 and Ar. The RAD 7 instrument has been utilized for radon analysis and gas chromatograph instrument for analysing the carrier gases. The predominance of gas spread has been explored based on the results of these surveys and three sites have been chosen for integrated observation with regard to seismotectonic activity to examine the affectability of the sites utilizing SSNTDs. From these sites, a site will be chosen for future long duration continuous observance on the premise of its affectability towards the seismotectonic activity inside the territory.
Czasopismo
Rocznik
Strony
1213--1221
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • National Center for Research on Earthquake Engineering National Applied Research Laboratories Taipei Taiwan
autor
  • National Center for Research on Earthquake Engineering National Applied Research Laboratories Taipei Taiwan
autor
  • National Center for Research on Earthquake Engineering National Applied Research Laboratories Taipei Taiwan
autor
  • National Center for Research on Earthquake Engineering National Applied Research Laboratories Taipei Taiwan
autor
  • Institute of Earth Sciences, Academia Sinica Taipei Taiwan
autor
  • Department of Earth Sciences, Institute of Geophysics National Central University Jhongli Taiwan
Bibliografia
  • 1. Ambraseys NN, Jackson JA (1998) Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys J Int 133(2):390–406
  • 2. Arias H, Palacios D, Sajo-Bohus L, Viloria T (2005) Alternative procedure for LR 115 chemical etching and alpha tracks counting. Radiat Meas 40:357–362
  • 3. Arora BR, Kumar A, Walia V, Yang TF, Fu CC, Liu T-K, Wen K-L, Chen C-H (2017) Cleaning soil gas radon at Hsinchu, Taiwan for contamination from meteorological and hydrological parameters: a step forward to identify earthquake precursors. J Asian Earth Sci (in press)
  • 4. Baubron JC, Allard P, Sabroux JC, Tedesco D, Toutain JP (1991) Soil gas emanations as precursory indicators of volcanic eruptions. J Geol Soc Lond 148:571–576
  • 5. Baubron JC, Rigo A, Toutain JP (2002) Soil gas profiles as a tool to characterize active tectonic areas: the Jaut pass example (Pyrenees, France). Earth Planet Sci Lett 196:69–81
  • 6. Blunt MJ, Fayers FJ, Orr FM (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34:1197–1204
  • 7. Burton M, Neri M, Condarelli D (2004) High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys Res Lett 31:L07618. https://doi.org/10.1029/2003GL019181
  • 8. Butt CRM, Gole MJ (1986) Groundwater helium surveys in mineral exploration in Australia. J Geochem Explor 25:309–344
  • 9. Chen C-T, Hu J-C, Lu C-Y, Lee J-C, Chan Y-C (2007) Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng Geol 95:30–47
  • 10. Chyi LL, Quick TJ, Yang FT, Chen CH (2005) Soil gas radon spectra and earthquakes. Terr Atmos Ocean Sci 16:763–774
  • 11. Ciotoli G, Guerra M, Lombardi E, Vittori E (1998) Soil gas survey for tracing seismogenic faults: a case study in the Fucino basin, Central Italy. J Geophys Res 103:23781–23794
  • 12. D’Alessandro W, Brusca L, Kyriakopoulos K, Michas G, Papadakis G (2009) Hydrogen sulphide as a natural air contaminant in volcanic/geothermal areas: the case of Sousaki, Corinthia (Greece). Environ Geol 57(8):1723–1728
  • 13. D’Alessandro W, Yuce G, Italiano F, Bellomo S, Gülbay AH, Yasin DU, Gagliano AL (2018) Large compositional differences in the gases released from the Kizildag ophiolitic body (Turkey): evidences of prevailingly abiogenic origin. Mar Pet Geol 89:174–184
  • 14. Dobrovolsky I, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117(5):1025–1044
  • 15. Etiope G (2015) Natural gas seepage: the Earth’s hydrocarbon degassing. Springer, New York, p 199
  • 16. Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193:291–300
  • 17. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204
  • 18. Fleischer RL, Mogro-Campero A (1981) Radon transport in the earth a tool for uranium exploration and earthquake prediction. In: Fowler PH, Clapham VM (eds) Solid state nuclear track detectors. Proceedings of the 11th international SSNTD conference, 7–12 Sep 1981, pp 501–512
  • 19. Frankel AD, Carver DL, Williams RA (2002) Nonlinear and linear site response and basin effects in Seattle for the M 6.8 Nisqually, Washington, earthquake. Bull Seismol Soc Am 92:2090–2109
  • 20. Fu CC, Yang TF, Walia V, Chen C-H (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in Southern Taiwan. Geochem J 39:427–439
  • 21. Fu CC, Yang TF, Jane D, Walia V, Chen YG, Liu TK, Chen C-H (2008) Variations of helium and radon concentrations in soil gases from an active fault zone in Southern Taiwan. Radiat Meas 43:S348–S352
  • 22. Fu CC, Yang TF, Walia V, Liu TK, Lin SJ, Chen C-H, Hou CS (2009) Variations of soil-gas composition around the active Chihshang Fault in a plate suture zone, eastern Taiwan. Radiat Meas 44:940–944
  • 23. Fu CC, Wang PK, Lee LC, Lin CH, Chang WY, Giuliani G, Ouzounov D (2015) Temporal variation of gamma rays as a possible precursor of earthquake in the longitudinal valley of eastern Taiwan. J Asian Earth Sci 114(2):362–372. https://doi.org/10.1016/j.jseaes.2015.04.035
  • 24. Fu CC, Yang TF, Tsai MC, Lee LC, Liu TK, Walia V, Chen CH, Chang WY, Kumar A, Lai TH (2017) Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chem Geol. https://doi.org/10.1016/j.chemgeo.2016.12.042
  • 25. Gole MJ, Butt CRM, Snelling AA (1986) A groundwater helium survey of the Koongarra uranium deposits, Pine Creek geosyncline, Northern Territory. Uranium 2:343–360
  • 26. Guerra M, Lombardi S (2001) Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 339:511–522
  • 27. Hartmann J, Levy JK (2005) Hydrogeological and gasgeochemical earthquake precursors: a review for application. Nat Hazards 34:279–304
  • 28. Heiligmann M, Stix J, Williams-Jones G, Lollar BS, Garzon VG (1997) Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia. J Volcanol Geotherm Res 77:267–283
  • 29. Hong WL, Yang TF, Walia V, Lin SJ, Fu CC, Chen YG, Sano Y, Chen C-H, Wen KL (2010) Nitrogen as the carrier gas for helium emission along an active fault in NW Taiwan. Appl Geochem 25:593–601
  • 30. Hu J-C, Angelier J, Lee J-C, Chu HT, Byrne D (1996) Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling. Tectonophysics 255:243–268
  • 31. Hussein AS (2008) Radon in the environment: friend or foe? In: Proceedings of the 3rd environmental physics conference, 19–23 Feb 2008, Aswan, pp 43–52
  • 32. Ioannides K (2003) Soil gas radon: a tool for exploring active fault zones. Appl Radiat Isot 59:205–213
  • 33. Jamadi F, Hosseini Ranjbar A, Abbaslou H (2015) Radon gas diffusion coefficient in moisturized soil samples. Int J Tech Phys Probl Eng 7:15–20Google Scholar
  • 34. King CY (1980) Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 83:3065–3078
  • 35. King C-Y, King B-S, Evans WC, Zhang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510
  • 36. Kumar A, Singh S, Mahajan S, Bajwa BS, Kalia R, Dhar S (2009) Earthquake precursory studies in Kangra valley of north-west Himalayas, India, with special emphasis on radon emission. Appl Radiat Isot 67:1904–1911
  • 37. Kumar A, Walia V, Yang TF, Hsien C-H, Lin S-J, Eappen KP, Arora BR (2013a) Radon–thoron monitoring in Tatun volcanic areas of northern Taiwan using LR-115 alpha track detector technique: pre calibration and installation. Acta Geophys 61(4):958–976
  • 38. Kumar G, Kumar A, Walia V, Kumar J, Gupta V, Yang TF, Singh S, Bajwa BS (2013b) Soil gas radon–thoron monitoring in Dharamshala area of North-West Himalayas, India using solid state nuclear track detectors. J Earth Syst Sci 122(5):1295–1301
  • 39. Kumar A, Walia V, Arora BR, Yang TF, Lin S-J, Fu C-C, Chen C-H, Wen K-L (2015) Identifications and removal of diurnal and semi-diurnal variations in radon time-series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Nat Hazard 79(1):317–330
  • 40. Kumar A, Walia V, Yang TF, Fu CC, Singh S, Bajwa BS, Arora V (2016) Soil 222Rn concentration, CO2 and CH4 flux measurements around the Jwalamukhi area of North-West Himalayas, India. Radiat Prot Dosimetry 171(2):1–5
  • 41. Lombardi S, Voltattorni N (2010) Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl Geochem 25:1206–1220
  • 42. Mahajan S, Walia V, Bajwa BS, Kumar A, Singh S, Seth N, Dhar S, Gill GS, Yang TF (2010) Soil-gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills, India. Nat Hazards Earth Syst Sci 10:1221–1227
  • 43. Philip H, Avagyan A, Karakhanian A, Ritz J-F, Rebai S (2001) Estimating slip rates and recurrence intervals for strong earthquakes along an intracontinental fault: example of the Pambak–Sevan–Sunik fault (Armenia). Tectonophysics 343:205–232
  • 44. Sokolov VYu, Loh CH, Wen KL (2000) Empirical study of sediment-filled basin response: a case of Taipei city. Earthq Spectra 16:681–707
  • 45. Suppe J (1984) Kinematics of arc–continent collision, flipping of subduction and back-arc spreading near Taiwan. Mem Geol Soc China 6:21–33
  • 46. Toké NA, Boone CG, Arrowsmith JR (2014) Fault zone regulation, seismic hazard, and social vulnerability in Los Angeles, California: hazard or urban amenity? Earth’s Futur 2(9):440–457
  • 47. Toutain J, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27
  • 48. Toutain JP, Baubron JC, Le Bronec J, Allard P, Briole P, Marty B, Miele G, Tedesco D, Luongo G (1992) Continuous monitoring of distal gas emanations at Vulcano, Southern Italy. Bull Volcanol 54:147–155
  • 49. Voltattorni N, Caramanna G, Cinti D, Galli G, Pizzino L, Quattrocchi F (2005) Study of CO2 natural emissions in different italian geological scenarios: a refinement of natural hazard and risk assessment. In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO science series. Springer, Berlin (ISBN: 1-4020-4470-4)
  • 50. Walia V, Su TC, Fu CC, Yang TF (2005a) Spatial variations of radon and helium concentration in soil gas across Shan-Chiao fault, Northern Taiwan. Radiat Meas 40:513–516
  • 51. Walia V, Virk HS, Yang TF, Mahajan S, Walia M, Bajwa BS (2005b) Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: a case study. Terr Atmos Oceanic Sci 16:775–804
  • 52. Walia V, Mahajan S, Kumar A, Singh S, Bajwa BS, Dhar S, Yang TF (2008) Fault delineation study using soil-gas method in the Dharamsala area, NW Himalayas, India. Radiat Meas 43:S337–S342
  • 53. Walia V, Lin SJ, Fu C, Yang TF, Hong WL, Wen KL, Chen CH (2010) Soil-gas monitoring: a tool for fault delineation studies along Hsinhua Fault (Tainan), southern Taiwan. Appl Geochem 25:602–607
  • 54. Walia V, Yang TF, Lin SJ, Kumar A, Fu CC, Chiu JM, Chang HH, Wen KL, Cheng C-H (2013) Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiat Meas 50:154–169. https://doi.org/10.1016/j.radmeas.2012.11.007
  • 55. Wang J-H (2008) Urban seismology in the Taipei metropolitan area: review and prospective. Terr Atmos Ocean Sci 19(3):213–233
  • 56. Woith H (2015) Radon earthquake precursor: a short review. Eur Phys J Spec Top 224(4):611–627
  • 57. Yang TF, Chou CY, Chen C-H, Chyi LL, Jiang JH (2003) Exhalation of radon and its carrier gases in SW Taiwan. Radiat Meas 36:425–429
  • 58. Yang TF, Lan TF, Lee HF, Fu CC, Chuang PC, Lo CH, Chen C-H, Chen CTA, Lee CS (2005a) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J 39:469–480
  • 59. Yang TF, Walia V, Chyi LL, Fu CC, Wang CC, Chen C-H, Liu TK, Song SR, Lee CY, Lee M (2005b) Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat Meas 40:496–502
  • 60. Yang TF, Fu CC, Walia V, Chen C.-H, Chyi LL, Liu TK, Song SR, Lee M, Lin CW, Lin CC (2006) Seismo-geochemical variations in SW Taiwan: multi-parameter automatic gas monitoring results. Pure Appl Geophys 163:693–709
  • 61. Yuce G, Gasparon M (2013) Preliminary risk assessment of radon in groundwater: a case study from Eskisehir. Turkey. Isot Environ Health Stud 49(2):163–179
  • 62. Yuce G, Ugurluoglu YD, Nadar N, Yalcin HT, Yaltirak C, Streil T, Oeser V (2010) Monitoring of earthquake precursors by multi-parameter stations in Eskisehir Region (Turkey). Appl Geochem 25(4):572–579
  • 63. Yuce G, Fu CC, D’Alessandro W, Gulbay AH, Lai CW, Bellomo S, Yang TF, Italiano F, Walia V (2017) Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Fault in the Amik Basin (Hatay), Turkey. Chem Geol 429:129–146
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa6f7b1c-e2e6-422a-9dac-5d47dcf769f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.