Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of this work was to prepare and characterise geopolymer composites containing lightweight aggregates - perlite and vermiculite. Design/methodology/approach: The geopolymer matrix was prepared on the basis of fly ash, sand and a 6M sodium hydroxide solution with sodium silicate. The properties of the materials were tested 28 days after the preparation of the samples. The following research methods were used to characterise the composites: compressive and flexural strength tests, microstructural tests using a scanning electron microscope, and thermal conductivity were measured. Findings: The results obtained showed a slight effect of the additives on the strength properties. Lightweight aggregates are characterised by good coherence with the matrix material. Their addition allowed to reduce the density and lowered the thermal conductivity of the materials. The results obtained indicate that the proposed additives can improve the properties of the geopolymer composite for use in the construction industry. Research limitations/implications: Further research should focus on geopolymer composites with perlite and involve fire-resistant and water-absorption tests. Practical implications: The production of lightweight building materials brings a number of benefits, such as reducing the density of building elements and, at the same time, the entire structure, which results in a reduction in their weight, as well as lower transport costs. Such elements have better thermal and acoustic insulation, reflected in the parameters of buildings. An additional advantage is the reduced environmental impact through better insulation properties, lower fuel consumption during transport, etc. Originality/value: The density of the material can be reduced by using lightweight aggregates or obtaining porous material in the foamed process. In the case of geopolymer composites, a number of studies related to foamed materials have been provided, but there is only a few previous research connected with lightweight aggregates such as perlite and vermiculite.
Wydawca
Rocznik
Tom
Strony
49--56
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Faculty of Engineering, İzmir Institute of Technology, Gülbahçe Kampüsü 35430 Urla İzmir, Türkiye
autor
- Faculty of Engineering, İzmir Institute of Technology, Gülbahçe Kampüsü 35430 Urla İzmir, Türkiye
autor
- Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Türkiye
autor
- Faculty of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
- [1] H. Es-Sebyty, M. Igouzal, E. Ferretti, Improving stability of an ecological 3D-printed house - a case study in Italy, Journal of Achievements in Materials and Manufacturing Engineering 111/1 (2022) 18-25. DOI: https://doi.org/10.5604/01.3001.0015.7041
- [2] N. Sharma, M. Singh Thakur, P.L. Goel, P. Sihag, A review: sustainable compressive strength properties of concrete mix with replacement by marble powder, Journal of Achievements in Materials and Manufacturing Engineering 98/1 (2020) 11-23. DOI: https://doi.org/10.5604/01.3001.0014.0813
- [3] I. Luhar, S. Luhar, P. Savva, A. Theodosiou, M.F. Petrou, D. Nicolaides, Light Transmitting Concrete: A Review, Buildings 11/10 (2021) 480. DOI: https://doi.org/10.3390/buildings11100480
- [4] V.V. Nguyen, V.S. Le, P. Louda, M.M. Szczypiński, R. Ercoli, V. Růžek, P. Łoś, K. Prałat, P. Plaskota, T. Pacyniak, K.E. Buczkowska, Low-Density Geopolymer Composites for the Construction Industry, Polymers 14/2 (2022) 304. DOI: https://doi.org/10.3390/polym14020304
- [5] A. Donmez Cavdar, H. Yel, S. Boran, Wood cement composites reinforced with polypropylene fibre, Journal of Achievements in Materials and Manufacturing Engineering 76/2 (2016) 49-54. DOI: https://doi.org/10.5604/17348412.1229478
- [6] K. Pławecka, P. Bazan, W.-T. Lin, K. Korniejenko, M. Sitarz, M. Nykiel, Development of Geopolymers Based on Fly Ashes from Different Combustion Processes, Polymers 14/10 (2022) 1954. DOI: https://doi.org/10.3390/polym14101954
- [7] I. Kurek, E. Florek, W. Gozdur, C. Ziejewska, J. Marczyk, M. Łach, K. Korniejenko, P. Duży, M. Choińska, M. Szechyńska-Hebda, M. Hebda, Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings, Energies 15/12 (2022) 4297. DOI: https://doi.org/10.3390/en15124297
- [8] K. Kaczmarski, K. Pławecka, B. Kozub, P. Bazan, M. Łach, Preliminary Investigation of Geopolymer Foams as Coating Materials, Applied Sciences 12/21 (2022) 11205. DOI: https://doi.org/10.3390/app122111205
- [9] M. Łach, Geopolymer Foams—Will They Ever Become a Viable Alternative to Popular Insulation Materials? - A Critical Opinion, Materials 14/13 (2021) 3568. DOI: https://doi.org/10.3390/ma14133568
- [10] M.S. Tale Masoule, N. Bahrami, M. Karimzadeh, B. Mohasanati, P. Shoaei, F. Ameri, T. Ozbakkaloglu, Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure, Ceramics International 48/8 (2022) 10347-10371. DOI: https://doi.org/10.1016/j.ceramint.2022.01.298
- [11] O. Youssf, J.E. Mills, M. Elchalakani, F. Alanazi, A.M. Yosri, Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application, Polymers 15/1 (2023) 171. DOI: https://doi.org/10.3390/polym15010171
- [12] H.M. Khater, Development and characterization of sustainable lightweight geopolymer composites, Ceramica 65 (2019) 153-161. DOI: https://doi.org/10.1590/0366-69132019653732551
- [13] A. Baziak, K. Pławecka, I. Hager, A. Castel, K. Korniejenko, Development and Characterization of Lightweight Geopolymer Composite Reinforced with Hybrid Carbon and Steel Fibers, Materials 14/19 (2021) 5741. DOI: https://doi.org/10.3390/ma14195741
- [14] D.L.C. Hao, R.A. Razak, M. Kheimi, Z. Yahya, M.M.A.B. Abdullah, D.D. Burduhos Nergis, H. Fansuri, R. Ediati, R. Mohamed, A. Abdullah, Artificial Lightweight Aggregates Made from Pozzolanic Material: A Review on the Method, Physical and Mechanical Properties, Thermal and Microstructure, Materials 15/11 (2022) 3929. DOI: https://doi.org/10.3390/ma15113929
- [15] F. Kristály, R. Szabó, F. Mádai, Á. Debreczeni, G. Mucsi, Lightweight composite from fly ash geopolymer and glass foam, Journal of Sustainable Cement-Based Materials 10/1 (2021) 1-22. DOI: https://doi.org/10.1080/21650373.2020.1742246
- [16] K. Kalinowska-Wichrowska, E. Pawluczuk, M. Bołtryk, A. Nietupski, Geopolymer concrete with lightweight artificial aggregates, Materials 15/9 (2022) 3012. DOI: https://doi.org/10.3390/ma15093012
- [17] S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates, Journal of Molecular Structure 1202 (2020) 127236. DOI: https://doi.org/10.1016/j.molstruc.2019.127236
- [18] S. Beaino, P. El Hage, R. Sonnier, S. Seif, R. El Hage, Novel Foaming-Agent Free Insulating Geopolymer Based on Industrial Fly Ash and Rice Husk, Molecules 27/2 (2022) 531. DOI: https://doi.org/10.3390/molecules27020531
- [19] B. Kozub, J. Castro-Gomes, An Investigation of the Ground Walnut Shells’ Addition Effect on the Properties of the Fly Ash-Based Geopolymer, Materials 15/11 (2022) 3936. DOI: https://doi.org/10.3390/ma15113936
- [20] E. Papa, V. Medri, A.N. Murri, L. Laghi, G. De Aloysio, S. Bandini, E. Landi, Characterization of alkali bonded expanded perlite, Construction and Building Materials 191 (2018) 1139-1147. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.086
- [21] R. Szabó, F. Dolgos, Á. Debreczeni, G. Mucsi, Characterization of mechanically activated fly ash-based lightweight geopolymer composite prepared with ultrahigh expanded perlite content, Ceramics International 48/3 (2022) 4261-4269. DOI: https://doi.org/10.1016/j.ceramint.2021.10.218
- [22] O. Gencel, A. Gholampour, H. Tokay, T. Ozbakkaloglu, Replacement of Natural Sand with Expanded Vermiculite in Fly Ash-Based Geopolymer Mortars, Applied Sciences 11/4 (2021) 1917. DOI: https://doi.org/10.3390/app11041917
- [23] V. Medri, E. Papa, M. Mazzocchi, L. Laghi, M. Morganti, J. Francisconi, E. Landi, Production and characterization of lightweight vermiculite/geopolymer-based panels, Materials and Design 85 (2015) 266-274. DOI: https://doi.org/10.1016/j.matdes.2015.06.145
- [24] M. Kaya, F. Köksal, Physical and mechanical properties of C class fly ash based lightweight geopolymer mortar produced with expanded vermiculite aggregate, Revista de la Construcción. Journal of Construction 21/1 (2022) 21-35. DOI: https://doi.org/10.7764/RDLC.21.1.21
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa67b091-41b7-4f64-a8f8-f23ce7dcf27c