PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Peptydy z węzłem cysteinowym jako inhibitory kallikreiny 13

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
inhibitory cysteine peptides as kallikrein 13 inhibitors
Języki publikacji
EN
Abstrakty
EN
Inhibitor cysteine knots (ICK) also known as "knottins," are cysteine-rich peptides typically composed of approximately 30 amino acids. These peptides exhibit a characteristic robust structure featuring three antiparallel β-sheets that are "knotted" together by three disulfide bonds. This structural motif confers stability to the protein, rendering it resistant to thermal denaturation and proteolysis. Consequently, inhibitor cysteine knots hold great promise as scaffolds for developing new peptide drugs. In this study, we present the synthesis and evaluation of six potential inhibitors targeting KLK13, utilizing the Ecballium elaterium trypsin II inhibitor (EETI-II) as the leading structure. The peptides were synthesized in solid-phase peptide synthesis with an automated peptide synthesizer. Subsequently, they were oxidized using iodine and then quenched with an anion exchange resin. Both linear and oxidized compounds were obtained and subjected to kinetic studies. The inhibitory activity against KLK13 was observed exclusively in the oxidized analogues of the synthesized compounds. Linear peptides exhibited lower affinity towards KLK13, highlighting the critical role of the disulfide bridge in the structure of the EETI-II analogues for inhibiting the enzyme activity.
Rocznik
Strony
346--368
Opis fizyczny
Bibliogr. 62 poz.,rys., tab., wykr.
Twórcy
  • Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63 80-308 Gdańsk
Bibliografia
  • [1] K. Kikuchi, M. Sugiura, T. Kimura, Int J Pept. 2015, 2015:537508.
  • [2] M. Reiwarth, D. Nasu, H. Kolmar, O. Avrutina, Molecules, 2012, 17:12533.
  • [3] M. Reinwarth, B. Glotzbach, M. Tomaszowski, S. Fabritz, O. Avrutina, H. Kolmar, Chembiochem, 2012, 14, 137.
  • [4] S. Kwon, F. Bosmans, Q. Kaas, O. Cheneval, A.C. Conibear, K.J. Rosengren, C.K. Wang, C.I. Schroeder, D.J Craik, Biotechnol Bioen, 2016, 113:2202.
  • [5] I. Schechter, A. Berger, Biochem Biophys Res Commun, 1967, 27:157.
  • [6] N. Gruba, E. Bielecka, M. Wysocka, A. Wojtysiak, M. Brzezińska-Bodal, K. Sychowska, M. Kalińska, M. Magoch, A. Pęcak, K. Falkowski, M. Wiśniewska, L. Sąsiadek, K. Płaza, E. Kroll, A. Pejkovska, M. Rehders, K. Brix, G. Dubin, T. Kantyka, J. Potempa, J., A. Lesner, Int J Mol Sci., 2019, 20:1557.
  • [7] T. Tokas, M. Avgeris, C. Alamanis, A. Scorilas, K.G. Stravodimos, C.A. Constantinides, J Cancer Res Clin Oncol, 2017, 143:521.
  • [8] K. Saginala, A. Barsouk, J.S. Aluru, P. Rawla, S.A. Padala, A. Barsouk, Med Sci (Basel), 2020, 8:15.
  • [9] L. Falzone, S. Salomone, M. Libra, Front Pharmacol, 2018, 9:1300.
  • [10] H. Kolmar H, FEBS J, 2008, 275:2684.
  • [11] C.P. Sommerhoff, O. Avrutina, H.U. Schmoldt, D. Gabrijelcic-Geiger, U. Diederichsen, H. Kolmar, J Mol Biol, 2010, 395:167.
  • [12] V. Herzig, G.F. King, Toxins, 2015, 7:4366.
  • [13] M.L. Colgrave, D.J. Craik, Biochemistry, 2004, 43:5965.
  • [14] R. Krätzner, J.E. Debreczeni, T. Pape, T.R. Schneider, A. Wentzel, H. Kolmar, G.M. Sheldrick, I. Uson, Acta Crystallogr D Biol Crystallogr, 2005, 61:1255.
  • [15] D.C.Rees, W.N. Lipscomb, W. N. J Mol Biol, 1982, 160:475.
  • [16] D.J. Craik, N.L. Daly, C. Waine, Toxicon, 2001, 39:43.
  • [17] S. Zhu, H. Darbon, K. Dyason, F. Verdonck, J.A.N. Tytgat, FASEB J, 2003, 17:1765.
  • [18] B. Molesini, D. Treggiari, A. Dalbeni, P. Minuz, T. Pandolfini, Br. J. Clin. Pharmacol. 2017, 83:63.
  • [19] J.R. Kintzing, J.R. Cochran, Cur Op Chem Biol, 2016, 34:143.
  • [20] A. Gould, Y. Ji, T.L. Aboye, J.A. Camarero. Curr Pharm Des. 2011, 17:4294.
  • [21] L. Gran, Lloydia. 1973, 36:174.
  • [22] C.W. Gruber, A.G. Elliott, D.C. Ireland, P.G. Delprete, S. Dessein, U. Goransson, M. Trabi, C.K. Wang, A.B. Kinghorn, E. Robbrecht, D.J. Craik, Plant Cell. 2008, 20: 2471.
  • [23] D.J. Craik, Toxins, 2012, 4:139.
  • [24] B.L. Barbet, A.T. Marshall, A.D. Gillon, D.J. Craik, M.A. Anderson. Proc Natl Acad Sci USA. 2008, 105:1221.
  • [25] S. Troeira Henriques, Y.H. Huang, S. Chaousis, C.K. Wang, D.J. Craik. Chembiochem. 2014, 15:1956.
  • [26] B. Molesini, D. Treggiari, A. Dalbeni, P. Minuz, T. Pandolfini, Br J Clin Pharmacol. 2017, 83:63.
  • [27] Y.H. Huang, M.L. Colgrave, N.L. Daly, A. Keleshian, B. Martinac, D.J. Craik. J Biol Chem. 2009, 284:20699.
  • [28] K.R. Gustafson, L.K. Walton, R.C. Jr Sowder, D.G. Johnson, L..K. Pannell, J.H. Jr. Cardellina M.R. Boyd, J Nat Prod. 2000, 63:176.
  • [29] A. Gould, J.A. Camarero, Chembiochem. 2017, 18:1350.
  • [30] E. Hu, D. Wang, J. Chen, X. Tao, Int J Clin Exp Med. 2015, 8:4059.
  • [31] M.F. Pinto, O.N. Silva, J.C. Viana, W.F. Porto, L. Migliolo, BdCN, N. Jr. Gomes, I.C. Fensterseifer, M.L. Colgrave, D.J. Craik, S.C. Dias, O.L. Franco. J Nat Prod. 2016, 79:2767.
  • [32] D.C. Rees, W.N. Lipscomb, Proc Natl Acad Sci U S A, 1980, 77: 277.
  • [33] J. Gracy, D. Le‐Nguyen, J.C. Gelly, Q. Kaas, A. Heitz, L. Chiche, Nucleic Acids Res, 2008, 36: D314.
  • [34] P.Q. Nguyen, S. Wang, A. Kumar, L.J. Yap, T.T. Luu, J. Lescar, J.P. Tam, FEBS J, 2014, 281: 4351.
  • [35] P.Q. Nguyen, T.T. Luu, Y. Bai, G.K. Nguyen, K. Pervushin, J.P. Tam, J Nat Prod, 2015, 78: 695.
  • [36] A. Christmann, K. Walter, A. Wentzel, R. Krätzner, H. Kolmar, Protein Eng, 1999, 12:797.
  • [37] J.L. Lahti, A.P. Silverman, J.R. Cochran, PLoS Comput Biol, 1999, 5:e1000499.
  • [38] A. Wentzel, A. Christmann, R. Krätzner, H. Kolmar, J Biol Chem, 1999, 274:21037.
  • [39] K. Hilpert, H. Wessner, J. Schneider-Mergener, K. Welfle, R. Misselwitz, H. Welfle, A.C. Hocke, S. Hippenstiel, W. Hohne, J Biol Chem, 2003, 278:24986.
  • [40] F.A. Attah, B.A. Lawal, A.B. Yusuf, O.J. Adedeji, J.T. Folahan, K.O. Akhigbe, T. Roy, A.A. Lawal, N.B. Ogah, O.E. Olorundare, J.C. Chamcheu, Plants, 2022, 11:3271.
  • [41] L.Y. Chan, S. Gunasekera, S.T. Henriques, N.F. Worth, S.J. Le, R.J. Clark, J.H. Campbell, D.J. Craik, N.L. Daly, Blood, 2011, 118:6709–17
  • [42] A.G. Poth, L.Y. Chan, D.J. Craik, Biopolymers, 2013, 100:480.
  • [43] F. Maaß, J. Wüstehube‐Lausch, S. Dickgießer, B. Valldorf, M. Reinwarth, H.U. Schmoldt, M. Daneschdar, O. Avrutina, U. Sahin, H. Kolmar, J Pept Sci, 2015, 21:651.
  • [44] J.K. Willmann, R.H. Kimura, N. Deshpande, A.M. Lutz, J.R. Cochran, S.S Gambhir, J Nucl Med, 2010, 51:433.
  • [45] R.H. Kimura, A.M. Levin, F.V. Cochran, J.R. Cochran, Proteins, 2009, 77, 359.
  • [46] B. Glotzbach, M. Reinwarth, N. Weber, S. Fabritz, M. Tomaszowski, H. Fittler, A. Christmann, O. Avrutina, H. Kolmar, PloS one, 2013, 8:e76956.
  • [47] S.J. Moore, M.G. Hayden Gephart, J.M. Bergen, Y.S. Su, H. Rayburn, M.P. Scott, J.R. Cochran, Proc Natl Acad Sci U S A, 2013, 110:14598.
  • [48] S. Reiss, M. Sieber, V. Oberle, A. Wentzel, P. Spangenberg, R. Claus, H. Kolmar, W. Lösche, Platelets, 2006, 17:153.
  • [49] T. Grover, R. Mishra, Bushra, P. Gulati, A. Mohanty, Peptides, 2020, 135:170430.
  • [50] S.L. Gerlach, P.K. Chandra, U. Roy, S. Gunasekera, U. Göransson, W.C. Wimley, S.E. Braun, D. Mondal, Medicines, 2019, 6:33.
  • [51] S. Gunasekera, F.M. Foley, R.J. Clark, L. Sando, L.J. Fabri, D.J. Craik, N.L. Daly, J Med Chem, 2008, 51:7697.
  • [52] M. Debela, N. Beafort, V. Magdalen, N.M. Schechter, C.S. Craik, M. Schmitt, W. Bode, P. Goettig, Biol. Chem., 2008, 389:623.
  • [53] M. Kalinska, U. Meyer-Hoffert, T. Kantyka, J. Potempa, Biochimie, 2016, 122:270.
  • [54] K. Mavridis, M. Avgeris, A. Scorilas, Expert Opin Ther Targets, 2014, 18:365.
  • [55] M.R. Darling, L. Jacson-Boeters, T.D. Daley, E.P. Diamandis, Int. J. Biol. Markers, 2006, 21:106.
  • [56] S. Ishige, A. Kasamatsu, K. Ogoshi, Y. Saito, K. Usukura, H. Yokoe, Y. Kouzu, H. Koike, Y. Sakamoto, K. Ogawara, M. Shiiba, H. Tanzawa, K. Uzawa, Mol. Carcinog, 2014, 53:557.
  • [57] F. Gueugnon, A. Barascu, K. Mavridis, K. et al. Tumor Biol, 2015, 36:4979.
  • [58] K. Nohara, K. Yamada, L. Yamada, Gen Thorac Cardiovasc Surg , 2018, 66:351.
  • [59] K. Milewska, K. Falkowski, M. Kalinska, E. Bielecka, A. Naskalska, P. Mak, A. Lesner A, A. Ochman, M. Urlik, J. Potempa, T. Kantyka, K. Pyrc. Sci Signal, 2020, 13:eaba9902.
  • [60] J. Kyte, R.F. Doolittle, J Mol Biol, 1982, 157:105.
  • [61] M.R. Wilkins, E. Gasteiger, A. Bairoch, J.C. Sanchez, K.L. Williams, R.D. Appel, D.F. Hochstrasser, Methods Mol Biol, 1999, 112:531.
  • [62] N. Gruba, P. Rachubik, A. Piwkowska, A. Lesner, Biomarkers, 2021, 26:770.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa653e58-daf0-4308-bf71-bbc609b51938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.