PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of thermal interactions between elements of propulsion system and selected parts of the airplane skin in small aircrafts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Development of new or upgrading of existing airplanes requires many different analyses, e.g., thermal, aerodynamical, structural, and safety. Similar studies were performed during re-design of two small aircrafts, which were equipped with new turboprop engines. In this paper thermo-fluid analyses of interactions of new propulsion systems with selected elements of airplane skin were carried out. Commercial software based numerical models were developed. Analyses of heat and fluid flow in the engine bay and nacelle of a single-engine airplane with a power unit in the front part of the fuselage were performed in the first stage. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the front landing gear, and the bottom part of the fuselage were investigated. Similar studies were carried out for the twin-engine airplane with power units mounted on the wings. In this case thermal interactions between the hot exhaust gases, which were flowing out below the wings, and the wing covers and flaps were studied. Simulations were carried out for different airplane configurations and operating conditions. The aim of these studies was to check if for the assumed airplane skin materials and the initially proposed airplane geometries, the cover destruction due to high temperature is likely. The results of the simulations were used to recommend some modifications of constructions of the considered airplanes.
Rocznik
Strony
45--61
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw
Bibliografia
  • [1] Goetzendorf-Grabowski T.: Formulation of the optimization problem for engine mount design – tractor propeller case. Aircr. Eng. Aerospa. Tec. 86(2014), 3, 228–233.
  • [2] Żółtak J., Stalewski W.: The preliminary design of the air-intake system and the nacelle in the small aircraft-engine integration process. Aircr. Eng. Aerospa. Tec. 86(2014), 3, 250–258.
  • [3] Łapka P., Seredyński M., Furmański P., Dziubiński A., Banaszek J.: Simplified thermo-fluid model of an engine cowling in a small airplane. Aircr. Eng. Aerospa. Tec. 86(2014), 3, 242–249.
  • [4] Iwaniuk A., Wisniowski W., Zóltak J.: Multi-disciplinary optimisation approach for a light turboprop aircraft-engine integration and improvement. Aircr. Eng. Aerospa. Tec. 88(2016), 2, 348–355.
  • [5] Łapka P., Bakker M., Furmanski P., van Tongeren H.: Comparison of 1D and 3D thermal models of the nacelle ventilation system in a small airplane. Aircr. Eng. Aerospa. Tec. 90(2018), 1, 114–125.
  • [6] Łapka P., Seredyński M., Furmański P.: Numerical analysis of the exhaust jet in the small aircrafts. In: Proc. 9th Int. Conf. Computational Heat and Mass Transfer, ICCHMT 2016, Cracow, 23-26 May 2016, 202, 1–11.
  • [7] Łapka P., Seredyński M., Furmański P.: Investigation of thermal interactions between the exhaust jet and airplane skin in small aircrafts. Prog. Comput. Fluid Dy. (2017), (accepted for publication).
  • [8] Łapka P., Seredyński M., Ćwik A.: Preliminary study on supercritical hydrogen and bleed air heat exchanger for aircraft application. Proc. Inst. Mech. Eng. G: J. Aerospace Eng. 232(2017), 12, 2231–2243., https://doi.org/10.1177/0954410017711723
  • [9] Versteeg H.K., Malalasekera W.: An Introduction to Computational Fluid Dynamics. Pearson Education, Harlow 2007.
  • [10] Howell J.R., Siegel R., Mengüç M.P.: Thermal Radiation Heat Transfer. CRC Press, Boca Raton 1992.
  • [11] Łapka P., Furmański P.: Fixed grid simulation of radiation-conduction dominated solidification process. J. Heat Trans. 132(2010), 2, 023504.
  • [12] Łapka P., Furmański P.: Fixed Cartesian grid based numerical model for solidification process of semi-transparent materials I: modelling and verification. Int. J. Heat Mass Tran. 55(2012), 19-20, 4941–4952.
Uwagi
EN
This work was a part of ESPOSA Project supported by the EU within the 7 Frame Program as well as received funding from the the Faculty of Power and Aeronautical Engineering of Warsaw University of Technology in the framework of statutory activity.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa6465be-071c-4c80-9593-b0be41261d4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.