Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, research on the use of pyrolysis products in the broadly understood economy is widely conducted in the world. This publication presents the results of research on the use of biochar primarily as a material for use in agriculture and environmental protection. In particular, its use to improve soil properties and as a component of organic fertilisers or composts, as well as an ingredient for animal bedding in livestock buildings or an additive for silage is discussed. In addition, the possibilities of using biochar in the energy sector as a solid fuel and in the broader field of environmental protection for remediation of contaminated land, for carbon sequestration and as a raw material for the production of activated carbons are discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--98
Opis fizyczny
Bibliogr. 92 poz., tab.
Twórcy
autor
- Independent Department of Agricultural Chemistry, Institute of Agriculture, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw, Poland
autor
- Independent Department of Agricultural Chemistry, Institute of Agriculture, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw, Poland
autor
- Independent Department of Agricultural Chemistry, Institute of Agriculture, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw, Poland
autor
- Pro Civis Foundation of Education and Social Dialogue, ul. Szkolna 36A, 25-604 Kielce, Poland
Bibliografia
- 1. Ahmedna, M., Marshall, W.E., Husseiny, A.A., Rao, R.M., Goktepe, I. 2004. The use of nutshell carbons in drinking water filters for removal of trace metals. Water Research, 38(4), 1062–1068.
- 2. Alhazmi, H., Loy, A.C.M. 2021. A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends. Bioresource Technology Reports, 14.
- 3. Angst, T.E., Sohi, S.P. 2013. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy, 5(2), 221–226.
- 4. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18.
- 5. Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.
- 6. Bera, T., Purakayastha, T.J., Patra, A.K. 2014. Spectral, chemical and physical characterisation of mustard stalk biochar as affected by temperature. Clay Research, 33(1), 36–45.
- 7. Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T. 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63.
- 8. Buss, W., Mašek, O. 2016. High-VOC biochar—effectiveness of post-treatment measures and potential health risks related to handling and storage. Environmental Science and Pollution Research, 23(19), 19580–19589.
- 9. Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116.
- 10. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.
- 11. Chen, G., Andries, J., Luo, Z., Spliethoff, H. 2003. Biomass pyrolysis/gasification for product gas production: The overall investigation of parametric effects. Energy Conversion and Management, 44(11), 1875–1884.
- 12. Cheng, C.H., Lehmann, J., Engelhard, M.H. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6), 1598–1610.
- 13. Cheng, H., Jones, D.L., Hill, P., Bastami, M.S. 2017. Biochar concomitantly increases simazine sorption in sandy loam soil and lowers its dissipation. Archives of Agronomy and Soil Science, 63(8), 1082–1092.
- 14. Chun, Y., Sheng, G., Chiou, G.T., Xing, B. 2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38(17), 4649–4655.
- 15. Chungcharoen, T., Srisang, N. 2020. Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. Journal of Cleaner Production, 256.
- 16. Commision, E., 2016. Regulation of the European Parliament and of the Coincil laying down rules on the making available on the market of CE marked fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009.
- 17. Dias, B.O., Silva, C.A., Higashikawa, F.S., Roig, A., Sánchez-Monedero, M.A. 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101(4), 1239–1246.
- 18. Ding, W., Dong, X., Ime, I.M., Gao, B., Ma, L.Q. 2014. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74.
- 19. Downie, A., Crosky, A., Munroe, P. 2012. Physical properties of biochar, Biochar for Environmental Management: Science and Technology, 13–32.
- 20. Dębowski Z., L.J. 2004. Krajowe stacje uzdatniania wód powierzchniowych stosujące węgle aktywne. Materiały konferencyjne „Węgiel Aktywny w Ochronie Środowiska i Przemyśle”, Wyd. Pol. Częstochowskiej. (in polish)
- 21. Verheijen F., Jeffery S., Bastos A., Van Der Velde M., Diafas I.F. 2010. Biochar Application to Soils A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, Office for the Official Publications of the European Communities, Luxembourg, 149.
- 22. Gaskin, J.W., Steiner, C., Harris, K., Das, K.C., Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069.
- 23. Gerlach H., S.H.P. 2014. Biochar in poultry farming. The Biochar Journa. Arbaz, Switzerland. ISSN 2297-1114. The Biochar Journal, Arbaz, Switzerland.
- 24. Ghysels, S., Estrada Léon, A.E., Pala, M., Schoder, K.A., Van Acker, J., Ronsse, F. 2019. Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal, 373, 446–457.
- 25. Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Martens, W., Mahmood, N., Zhang, S. 2015. Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 8(1), 129–139.
- 26. Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59.
- 27. Hays, D., Patrick, J.W., Walker, A. 1976. Pore structure development during coal carbonization. 1. Behaviour of single coals. Fuel, 55(4), 297–302.
- 28. Henning KH, D.J. 1991. Aktivkohlen – Herstellungsverfahren und Produkteigenschaf- ten. (Vortrag im Rahmen des Seminars.A ktivkohlen in Technik und Umweltschutz” der Technischen Akademie Wuppertal am 18, u. 19, April 1991).
- 29.Schmid H.P. 2012. 55 Uses of Biochar, Ithaka Journal 1/ 2012: 262–264.
- 30. Izquierdo, M.T., Rubio, B., Mayoral, C., Andrés, J.M. 2003. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel, 82(2), 147–151.
- 31. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., Sonoki, T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621.
- 32. Katyal, S., Thambimuthu, K., Valix, M. 2003. Carbonisation of bagasse in a fixed bed reactor: Influence of process variables on char yield and characteristics. Renewable Energy, 28(5), 713–725.
- 33. Krull, E.S., Baldock, J.A., Skjemstad, J.O., Smernik, R.J. 2012. Characteristics of biochar: Organo-chemical properties, Biochar for Environmental Management: Science and Technology, 53–65.
- 34. Lee, J., Kim, K.H., Kwon, E.E. 2017. Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70–79.
- 35. Lee, J.M., Park, D.G., Kang, S.S., Choi, E.J., Gwon, H.S., Lee, H.S., Lee, S.I. 2022. Short-Term Effect of Biochar on Soil Organic Carbon Improvement and Nitrous Oxide Emission Reduction According to Different Soil Characteristics in Agricultural Land: A Laboratory Experiment. Agronomy, 12(8).
- 36. Lehmann, J., Joseph, S. 2012. Biochar for environmental management: Science and technology. Biochar for Environmental Management: Science and Technology.
- 37. Leng, L., Huang, H. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642.
- 38. Lewandowski, W.M., Radziemska, E., Ryms, M., Ostrowski, P. 2011. Modern methods of thermo-chemical biomass conversion into gas, liquid and solid fuels. Ecological Chemistry and Engineering, S, 18(1), 39–47.
- 39. Li, C., Bair, D.A., Parikh, S.J. 2018. Estimating potential dust emissions from biochar amended soils under simulated tillage. Science of the Total Environment, 625, 1093–1101.
- 40. Li, S., Harris, S., Anandhi, A., Chen, G. 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902.
- 41. Li, X., Peng, B., Liu, Q., Zhang, H. 2022. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar. Bioresource Technology, 348.
- 42. Li, Y., You, S. 2022. Biochar soil application: soil improvement and pollution remediation, Biochar in Agriculture for Achieving Sustainable Development Goals, 97–102.
- 43. Liu, J., Shen, J., Li, Y., Su, Y., Ge, T., Jones, D.L., Wu, J. 2014. Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. European Journal of Soil Biology, 65, 30–39.
- 44. Liu, R., Sarker, M., Rahman, M.M., Li, C., Chai, M., Cotillon, R., Scott, N.R. 2020. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review. Progress in Energy and Combustion Science, 80.
- 45. Liu, W.J., Jiang, H., Yu, H.Q. 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251–12285.
- 46. Lu, C., Zhang, X., Gao, Y., Lin, Y., Xu, J., Zhu, C., Zhu, Y. 2021. Parametric study of catalytic co-gasification of cotton stalk and aqueous phase from wheat straw using hydrothermal carbonation. Energy, 216.
- 47. Lua, A.C., Yang, T., Guo, J. 2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis, 72(2), 279–287.
- 48. Lyu, H., He, Y., Tang, J., Hecker, M., Liu, Q., Jones, P.D., Codling, G., Giesy, J.P. 2016. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 218, 1–7.
- 49. Malińska, K., Zabochnicka-Światek, M., Dach, J. 2014. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecological Engineering, 71, 474–478.
- 50. Matovic, D. 2011. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, 36(4), 2011–2016.
- 51. Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C.A., Tonon, G. 2014. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy, 62, 149–157.
- 52. Méndez, A., Terradillos, M., Gascó, G. 2013. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis 102, 124–130.
- 53. Naeem, M.A., Khalid, M., Arshad, M., Ahmad, R. 2014. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51(1), 75–82.
- 54. Nigussie, A. 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils, Kissi, Endalkachew, Conference Proceedings.
- 55. Novak, J.M., Busscher, W.J. 2013. Selection and use of designer biochars to improve characteristics of southeastern USA coastal plain degraded soils, Advanced Biofuels and Bioproducts, 69–96.
- 56. Pak, N.M., Rempillo, O., Norman, A.L., Layzell, D.B. 2016. Early atmospheric detection of carbon dioxide from carbon capture and storage sites. Journal of the Air and Waste Management Association, 66(8), 739–747.
- 57. Peng, X., Ye, L.L., Wang, C.H., Zhou, H., Sun, B. 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112(2), 159–166.
- 58. Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A., Gruda, N.S., Tzortzakis, N. 2020. Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy, 10(1).
- 59. Qambrani, N.A., Rahman, M.M., Won, S., Shim, S., Ra, C. 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273.
- 60. Ravi, S., Sharratt, B.S., Li, J., Olshevski, S., Meng, Z., Zhang, J. 2016. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Scientific Reports, 6.
- 61. Ribas, A., Mattana, S., Llurba, R., Debouk, H., Sebastià, M.T., Domene, X. 2019. Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites. Science of the Total Environment, 685, 1075–1086.
- 62. Roskill. 2017. Activated Carbon: Global Industry, Markets and Outlook to 2025: 2017. Roskill Information Services Ltd. United Kingdom.
- 63. Rangabhashiyam, S., Paramasivan, B. 2019. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, 128, 405–423.
- 64. S.S. 2019. Piroliza odpadów jako element gospodarki o obiegu zamkniętym. Waste pyrolysis as part of a circular economy closed, Monografia s. 211, wyd. Politechniki Śląskiej. (in Polish)
- 65. Sahu, D., Kannan, G.M., Vijayaraghavan, R. 2014. Carbon black particle exhibits size dependent toxicity in human monocytes. International Journal of Inflammation, 2014.
- 66. Schenker, M.B., Pinkerton, K.E., Mitchell, D., Vallyathan, V., Elvine-Kreis, B., Green, F.H.Y. 2009. Pneumoconiosis from agricultural dust exposure among young California farmworkers. Environmental Health Perspectives, 117(6), 988–994.
- 67. Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A., Haszeldine, S. 2012. Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49–58.
- 68. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57(4), 603–619.
- 69. Singh, B., Singh, B.P., Cowie, A.L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment, Australian Journal of Soil Research, 516–525.
- 70. Singh, H., Northup, B.K., Rice, C.W., Prasad, P.V.V. 2022. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1).
- 71. Sohi, S.P. 2012. Carbon storage with benefits. Science, 338(6110), 1034–1035.
- 72. Song, W., Guo, M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145.
- 73. Steiner, C., Das, K.C., Melear, N., Lakly, D. 2010. Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236–1242.
- 74. Suman, S., Gautam, S. 2017. Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(8), 761–767.
- 75. Sun, J., He, F., Pan, Y., Zhang, Z. 2017. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 67(1), 12–22.
- 76. Sun, J., Lian, F., Liu, Z., Zhu, L., Song, Z. 2014. Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicology and Environmental Safety, 106, 226–231.
- 77. Syuhada, A.B., Shamshuddin, J., Fauziah, C.I., Rosenani, A.B., Arifin, A. 2016. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Canadian Journal of Soil Science, 96(4), 400–412.
- 78. Thabelo, M. 2018. Biochar and poultry manure effects on selected soil physical and chemical properties and maize (Zea mays) in a dry environment, University of Venda.
- 79. Tripathi, M., Sahu, J.N., Ganesan, P. 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481.
- 80. Trompowsky, P.M., De Melo Benites, V., Madari, B.E., Pimenta, A.S., Hockaday, W.C., Hatcher, P.G. 2005. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Organic Geochemistry, 36(11), 1480–1489.
- 81. Tsuji, K., Shiraishi, I. 1997. Combined desulfurization, denitrification and reduction of air toxics using activated coke: 1. Activity of activated coke. Fuel, 76(6), 549–553.
- 82. Walker Philip L.Jr., J., L. Figueiredo, J.A.M. 1986. Carbon and Coal Gasification. [NATO ASI Series 105]. Science and Technology (1986, Springer Netherlands).
- 83. Wang, J., Wang, S. 2019. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022.
- 84. Wang, X., Xing, B. 2007. Importance of structural makeup of biopolymers for organic contaminant sorption. Environmental Science and Technology, 41(10), 3559–3565.
- 85. Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H.H., Guo, W., Liu, C., Chen, L., Xing, B. 2015. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317.
- 86. Xie, T., Reddy, K.R., Wang, C., Yargicoglu, E., Spokas, K. 2015. Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45(9), 939–969.
- 87. Xu, Y., Qi, F., Bai, T., Yan, Y., Wu, C., An, Z., Luo, S., Huang, Z., Xie, P. 2019. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars. Journal of Hazardous Materials, 380.
- 88. Yang, X., Meng, J., Lan, Y., Chen, W., Yang, T., Yuan, J., Liu, S., Han, J. 2017. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agriculture, Ecosystems and Environment, 240, 24–31.
- 89. Zhao, N., Lv, Y.Z., Yang, X.X., Huang, F., Yang, J.W. 2018. Characterization and 2D structural model of corn straw and poplar leaf biochars. Environmental Science and Pollution Research, 25(26), 25789–25798.
- 90. Zhao, S., Yang, P., Liu, X., Zhang, Q., Hu, J. 2020. Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification. Bioresource Technology, 302.
- 91. Zielińska, A., Oleszczuk, P. 2016. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere, 153, 68–74.
- 92. Zulkornain, M.F., Shamsuddin, A.H., Normanbhay, S., Md Saad, J., Ahmad Zamri, M.F.M. 2022. Optimization of rice husk hydrochar via microwave-assisted hydrothermal carbonization: Fuel properties and combustion kinetics. Bioresource Technology Reports, 17.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa5fe69d-6146-4739-8463-b29c52713748