Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, the trend towards the use of transportation technologies which are clean and less dependent on fossil fuel is highly increased. That is because of the fast depletion of oil reserves in the world. On the other hand, the growth of developing nations into industrialized ones will increase the demand on the energy sector, a large part of which is transportation. This development of the transportation sector will affect the environment as a result of greenhouse gases. In this paper, the use of several types of clean energy vehicles is demonstrated, compared with the ones utilizing classic internal combustion engine, with statistical demonstration and the energy conversion chain. The impact of hybrid vehicles on the petroleum reserves and consumption rates will also be discussed using some mathematical equations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
16--24
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Mechanical Engineering Department, Al Hoson College, Al Balqa Applied University, Jordan
autor
- Mechanical Engineering Department, Tafila Technical University, Jordan
autor
- Mechanical Engineering Department, Al Hoson College, Al Balqa Applied University, Jordan
Bibliografia
- 1. BP Statistical Review of World Energy. BP Company, 2017.
- 2. Brennan J.W., Barder T.E. 2016. Battery Electric Vehicles vs. Internal Combustion Engine Vehicles. A United States-Based Comprehensive Assessment. Available: http://www.adlittle.us/uploads/tx_extthoughtleadership/ADL_BEVs_vs_ICEVs_FINAL_November_292016.pdf. [Accessed: Aug. 7, 2018].
- 3. Brutsaert W. 2017. Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scalling. Advances in Water Resources, 106, August, 3–5.
- 4. CO2 Emissions from Fuel Combustion Report, 2016. International Energy Agency.
- 5. Difiglio C. 2014. Oil, economic growth and strategic petroleum stocks. Energy Strategy Reviews, 5, December, 48–58.
- 6. Ehsani M., Emadi Y.A., 2009. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition.
- 7. Economist, 2017. Electric Cars: Volts Wagons. February 18.
- 8. Evans R.L. 2005. Reducing Global Warming with innovative transportation technology. SAE Technical Paper Series.
- 9. Ferguson C.R., Kirkpatrick A.T., 2013. Internal Combustion Engines: Applied Thermosciences. Third Edition, Wiley.
- 10. Haldeman J., 2012. Automotive Fuel and Emission Control Systems. Third Edition, Pearson.
- 11. Hasan S., 2017. Impact on crude oil demand by electric vehicles in China – Adopting measures similar to Norwegian EV policy. Master thesis.
- 12. https://cleantechnica.com/2017/08/19/top-electric-car-countries-charts [Accessed: Aug. 7, 2018].
- 13. https://www.statista.com/statistics/270603/world-wide-number-of-hybrid-and-electric-vehicles-since-2009 [Accessed: Aug. 7, 2018].
- 14. Incekara C.O., Ougulata S.N. 2017. Turkey’s energy planning considering global environmental concerns. Ecological Engineering, 102, May, 589–595.
- 15. Global Greenhouse Gas Emissions Data, 2014. Intergovernmental Panel on Climate Change.
- 16. International Energy Outlook, 2017. US Department of Energy.
- 17. Kampman B., van Essen H., Braat W., et al., 2011. Impacts of Electric Vehicles – Deliverable 5, Impact Analysis For Market Uptake Scenarios and Policy Implications. ICF International. Ecologic Institute. Delft.
- 18. Kuriyama A., Abe N. 2018. Ex-post assessment of the Kyoto Protocol-quantification of CO2 mitigation impact in both Annex B and non-Anex B countries. Applied Energy, 220, June, 286–295.
- 19. O’Hayre R., Suk-Won Cha, Prinz F.B., Colella W., 2016. Fuel cell Fundamentals. Third Edition, Wiley.
- 20. Omer A.M. 2008. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12, 2265–2300.
- 21. Onn C.C., et al., 2017. Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D. Available: http://dx.doi.org/10.1016/j.trd.2017.06.018 [Accessed: Aug. 7, 2018].
- 22. Environmental Protection Agency Report, 2017. Overview of Greenhouse Gases. United States.
- 23. Steinberger-Wilckens R., Lehnert W., 2010. Innovations in Fuel Cell Technologies. RSC Energy and Environment Series, No. 2.
- 24. Tianduo P., Xunmin O., Xiaoyu Y., 2018. Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chemical Engineering Research and Design, 131, 699–708.
- 25. United States Energy Information Administration, 2017.
- 26. Ya Wu, Li Zhang, 2017. Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D, 51, 129–145.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa5c9c33-e2fa-4dff-a878-3c00f210d33d