PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric integral equations systems method in solving unsteady heat transfer problems for laser heated materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular numerical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems (PIES), which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape approximation functions.
Rocznik
Strony
167--172
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
autor
  • Faculty of Mathematics and Computer Science, University of Bialystok, ul. Konstantego Ciołkowskiego 1M, 15-245 Białystok
Bibliografia
  • 1. Al-Nimr M. A., Alkam M., Arpaci V. (2002), Heat transfer mechanisms during short-pulse laser heating of two-layer composite thin films, Heat and Mass Transfer, 38( 7-8), 609-614.
  • 2. Brebbia C. A., Telles J. C., Wrobel, L. C. (1984), Boundary element techniques, theory and applications in engineering, Springer, New York.
  • 3. Brugger K. (1972), Exact solution for the temperature rise in a laserheated slab, J. Appl. Phys., 43, 557–583.
  • 4. Gladush G. G., Smurov I. (2011), Physics of Laser Materials Processing: theory and experiment, Springer series in materials science, 146.
  • 5. Jewtuszenko A., Matysiak S. J., Różniakowska M. (2009), The temperature and thermal stresses caused by the laser impact on construction materials (in Polish), OWPB, Białystok.
  • 6. Jirousek J., Qin Q. H. (1996), Application of hybrid-Trefftz element approach to transient heat conduction analysis, Computers & Structures, 58, 195–201.
  • 7. Johanssona B. T., Lesnicb D. (2008), A method of fundamental solutions for transient heat conduction, Engineering Analysis with Boundary Elements, 32, 697–703.
  • 8. Lewis R. W., Morgan K., Thomas H. R., Seetharamu K. (1996), The Finite Element Method in Heat Transfer Analysis, Wiley.
  • 9. Majchrzak E. (2001), Boundary element method in heat transfer (in Polish), Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 10. Nowak A. J., Brebbia C. A. (1989), The multiple-reciprocity method. A new approach for transforming BEM domain integrals to the boundary, Engineering Analysis with Boundary Elements, 6, 164-167.
  • 11. Partridge P. W., Brebbia C. A., Wrobel L. C. (1992), The dual reciprocity boundary element method, Computational Mechanics Publications, Southampton.
  • 12. Tanaka M., Matsumoto T., Yang Q. F. (1994), Time-stepping boundary element method applied to 2-D transient heat conduction problems, Applied Mathematical Modelling, 18, 569–576.
  • 13. Warren R. E., Spark M. (1979), Laser heating of a slab having temperature-dependent surface absorption, J. Appl. Phys., 50, 7952- 7958.
  • 14. Xiaokun Z., Rui D., Hua W. (2011), A VBCM-RBF based meshless method for large deflection of thin plates, International Conference on Multimedia Technology (ICMT), Hangzhou, 2380-2384.
  • 15. Yanez A., Alvarez J. C., Lopez A. J., Nicolas G., Perez J. A., Ramil A., Saavedra E. (2002), Modelling of temperature evolution on metals during laser hardening process, J. Appl. Surf. Sci., 186, 611-616.
  • 16. Zieniuk E. (2013), Computational method PIES for solving boundary value problems (in Polish), Polish Scientific Publishers PWN, Warsaw.
  • 17. Zieniuk E., Sawicki D., Bołtuć A. (2014), Parametric integral equations systems in 2D transient heat conduction analysis, International Journal of Heat and Mass Transfer, 78, 571–587.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa5214d4-a769-427a-aa62-d293cfab75f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.