PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Flocks Doping on the Dynamic Mechanical Properties of Shear Thickening Gel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymethyl methacrylate (PMMA) was used as the dispersed phase and mold silicone was used as the continuous phase to prepare the shear thickening gel (STG) doped with a certain amount of flocks by rotary stirring. STG doped with flocks by a rotary rheometer was tested and observed through a scanning electron microscope. Results revealed that both the rotary stirring sample preparation and the rheological test method of the rotary rheometer could lead to the regular arrangement of flocks and could not reflect shear thickening performance accurately. The flocks showed a random arrangement in STG after the mixing process, and the dynamic mechanical properties were able to be measured with a dynamic mechanical analyzer (DMA). Flocks with a fineness of 3 Denier, 1 mm in length, and a mass ratio of 5% had significant effects on the dynamic mechanical properties of STG. Due to long continuous shearing time, flocks were arranged regularly when the sweeping frequency was higher than 125 Hz, then the shear thickening performance of the doped STG was declined.
Rocznik
Strony
73--79
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • College of Textiles, Donghua University, Shanghai 201620, China
autor
  • Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Shanghai 201620, China
  • College of Textiles, Donghua University, Shanghai 201620, China
autor
  • Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Shanghai 201620, China
  • College of Textiles, Donghua University, Shanghai 201620, China
autor
  • College of Textiles, Donghua University, Shanghai 201620, China
Bibliografia
  • [1] Houston, J. E. (2005). A local-probe analysis of the rheology of a “solid liquid”. Journal of Polymer Science Part B: Polymer Physics, 43(21), 2993–2999.
  • [2] Maguz, H., Clements, F., Rangari, V., Dhanak, V., Beamson, G. (2009). Enhanced stab resistance of armor composites with functionalized silica nanoparticles. Journal of Applied Physics, 105, 064307–064314.
  • [3] Lee, Y. S., Wetzel, E. D., Wagner, N. J. (2003). The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science, 38, 2825–2833.
  • [4] Afeshejani, S. H., Sabet, S. A., Atai, M. E. (2014). Energy absorption in a shear-thickening fluid. Journal of Materials Engineering and Performance, 23, 4289–4297.
  • [5] Soutrenon, M., Michaud, V. (2014). Impact properties of shear thickening fluid impregnated foams. Smart Materials and Structures, 23, 035022.
  • [6] Lin, N. C., Guy, B. M., Hermes, M., Ness, C., Sun, J., et al. (2015). Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Physical Review Letters, 135, 228304–228309.
  • [7] Yu, K. J., Cao, H. J., Qian, K., Sha, X., Chen, Y. (2012). Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol. Journal of Nanoparticle Research, 14, 747–756.
  • [8] Wang, S., Xuan, S. H., Wang, Y. P., Xu, C. H., Mao, Y., et al. (2016). Stretchable polyurethane sponge scaffold strengthened shear stiffening polymer and its enhanced safeguarding performance. ACS Applied Materials and interfaces, 8, 4946–4954.
  • [9] Feng, R. R. (2020). Study on the puncture resistance of fabrics with integral pleated structure reinforced by shear thickening fluid. MD Thesis, Donghua University, China.
  • [10] Green, P., Palmer, R. (2010). USA, US0132099A12010.
  • [11] Guo, Z. C. (2016). DuPont and British D3O develop new multi-purpose plastic protective materials. Chemical Propellants & Polymeric Materials, 14(04), 68.
  • [12] He, Q. Y., Cao, S. S., Wang, Y. P., Xuan, S., Wang, P., et al. (2017). Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Composites: Part A, 106, 82–90.
  • [13] Li, D. Y., Wang, R., Liu, X., Zhang, S., Fang, S., et al. (2020). Effect of dispersing media and temperature on inter-yarn frictional properties of Kevlar fabrics impregnated with shear thickening fluid. Composite Structures, 249, 112557–112566.
  • [14] Natalia, M., Wladyslaw, M. R. (2013). Use of short fibers as a filler in rubber compounds. AUTEX Research Journal, 2(13), 40–43.
  • [15] Joel, N., Steven, M., Cristian, O. (2019). Pre-dispersed short fibers: A cost-effective way to reinforce rubber compounds. Advanced Rubber Technology, 2, 35–40.
  • [16] Yin, S., Ma, L., Wu, L. Z. (2011). Carbon fiber composite lattice structure filled with silicone rubber. Procedia Engineering, 10, 3191–3194.
  • [17] Budsaraporn, S., Samar, H., Gautier, S., Karine, M., Taweechai, A. (2020). Comparative study of pineapple leaf microfiber and aramid fiber reinforced natural rubbers using dynamic mechanical analysis, Polymer Testing, 82, 106289–106299.
  • [18] Chen, X. Y., Gu, Y. Z., Liang, J. Y., Bai, M., Wang, S., et al. (2020). Enhanced microwave shielding effectiveness and suppressed reflection of chopped carbon fiber felt by electrostatic flocking of carbon fiber. Composites Part A: Applied Science and Manufacturing, 139, 106099–106110.
  • [19] Kim, Y. K. (2011). Specialist yarn and fabric structures. Woodhead (Cambridge, UK), pp. 287–317.
  • [20] Li, Y. L., Rao, B. J., Tan, Y. H. (2019). A new DMA mold for testing the mechanical properties of fluids: China, CN110617944A. Oct. 25, 2019.
  • [21] Wetzel, E. D., Lee, Y. S., Egres, R. G. (2004). The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites. American Institute of Physics (New York, USA), pp. 288–293.
  • [22] Anna, W., Piotr, D. (2016). Research on biophysical properties of protective clothing, AUTEX Research Journal, 4(16), 236–240.
  • [23] Brady, J. F., Bossis, G. (1985). The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. Journal of Fluid mechanics, 29, 145–155.
  • [24] Brady, J. F., Bossis, G. (1988). Stokesian dynamic annual review of fluid mechanics. Journal of Fluid mechanics, 201, 41–57.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa51d164-862e-419f-b162-cbf119a1474a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.