PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery mechanisms of sericite in microcrystalline graphite flotation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sericite is the main contaminant of concentrate in commercial microcrystalline graphite ore flotation. It was necessary to identify its recovery mechanisms so that the appropriate solution can be selected. In this study, the influence of sericite on flotation selectivity of microcrystalline graphite ore and its recovery mechanisms were investigated. Artificial mixtures flotation test suggested that sericite seriously reported into concentrate leading to poor flotation selectivity of microcrystalline graphite ore. However, the aggregation/dispersion behavior of artificial mixtures indicated that a large repulsive energy existed between sericite and microcrystalline graphite particles at pH 7.4, and sericite was not likely to report into graphite concentrate by slime coating. The results obtained from contact angle measurements and a technique of Warren showed that the floated sericite reached the froth via a combination of both entrainment and entrapment mechanisms, not via true flotation.
Rocznik
Strony
387--400
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • College of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
autor
  • School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China
autor
  • School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China
autor
  • School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China,
Bibliografia
  • ADAMCZYK Z., WERONKI P., 1999, Application of the DLVO theory for particle deposition problems, Advances in Colloid and Interface Science, 83(1-3), 137-226.
  • BERGSTROM L., 1997, Hamaker constants of inorganic materials, Advances in Colloid and Interface Science, (70), 125-169.
  • BLASKETT K.S., 1960, Some effects of depressants in the flotation of a lead ore, Proc. 5th Int. Mineral Processing Cong., 409-429.
  • CROSSLEY P., 1999, Graphite—High-tech supply sharpens up, Industrial Minerals, (386), 31-47.
  • DONG F.Z., 1997, A study on flotation of a cryptocrystalline graphite ore, Conservation and Utilization of Mineral Resources, (1), 15-17.
  • CHIBOWSKI E., PEREA-CARPIO R., 2002, Problems of contact angle and solid surface free energy determination, Advances in Colloid and Interface Science, 98(2), 245-264.
  • GAO H.M., YUAN J.Z., WANG X., GUAN J., ZHANG L., JING Z., MAO Y.L., 2007, Mechanism of surface modification for sericite, Journal of Wuhan University of Technology--Materials Science Edition, 22(3), 470-472.
  • GEORGE P., NGUYEN A.V., JAMESON G.J., 2004, Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles, Minerals Engineering, 17(7-8), 847-853.
  • HE M., 2009, The influence of adsorbed polymer on clay and copper mineral particles' interactions, Doctoral Dissertation, Applied Science, University of South Australia, Brisbane, 2-3.
  • JI G.C., 1991, Continuous flotation experiment of microcrystalline graphite, Non-metallic Mines, (2), 16-18.
  • LI H.Q., FENG Q.M., YANG S.Y., OU L.M., LU Y., 2014, The entrainment behaviour of sericite in microcrystalline graphite flotation, International Journal of Mineral Processing, (127), 1-9.
  • MITCHELL T.K., NGUYEN A.V., EVANS G.M., 2005, Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation, Advances in Colloid and Interface Science, 114–115227–237.
  • NGUYEN A.V., EVANS G.M., JAMESON G.J., 2002, Approximate calculations of electrical double-layer interaction between spheres. Encyclopedia of surface and colloid science. H. AT. New York, Marcel Dekker.
  • MAURER S., MERSMANN A., PEUKERT W., 2001, Henry coefficients of adsorption predicted from solid Hamaker constants, Chemical Engineering Science, 56(11), 3443–3453.
  • SALGADO M.R., 2001, Upgrading the graphite by flotation at Bogala Mines in Sri Lanka, J. Cent. South Univ. Technol., 8(3), 193-196.
  • SILVESTER E., 2011, The recovery of sericite in flotation concentrates, Mineral Processing and Extractive Metallurgy, 120(1), 10-14.
  • SIMANDL G.J., KENANL W.M., 1997, Microcrystalline graphite, British Columbia Geological Survey Geological Fieldwork, 240-241 240-244.
  • WAN Q.H., 1997, Effect of electrical double-layer overlap on the electroosmotic flow in packed-capillary columns, Analytical Chemistry, 69(3), 361-363.
  • WANG B., PENG Y., 2013, The behaviour of mineral matter in fine coal flotation using saline water, Fuel, 109309-315.
  • WARREN L.J., 1985, Determination of the contributions of true flotation and entrainment in batch flotation tests, International Journal of Mineral Processing, 14(1), 33-44.
  • XIA Y.K., REN Z.M., CHEN H.X., GUAN F.T., 1996, A noval flotation flowsheet of microcrystalline graphite and its industrial application, Non-metallic Mines, 19963.
  • ZHENG X., JOHNSON N.W., FRANZIDIS J.P., 2006, Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment, Minerals Engineering, 19(11), 1191-1203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa4eb151-5fb9-4a7e-afb6-3a23fd480b4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.