PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production potential of biodiesel, methane and electricity in the largest steamed rice industry in Rio Grande do Sul, Brazil: case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential for energy production from effluents and husks generated in grain processing in the rice parboiling industries in Brazil is capable of promoting energy self-sufficiency in the sector, through the production and use of syngas and biogas. However, the production of methane from residues of the rice parboiling industries is still little explored by academic studies, in general studies on the potential of methane production by this same type of effluent are found in the south of the country, however, the same is not true for the production of biodiesel from rice bran oil. The objective of this study was to determine the production potential of biodiesel, methane and electric energy of the largest parboiled rice industry in Rio Grande do Sul, located in the southern region of the country. According to this study, the rice parboiling industry located in Rio Grande do Sul, Brazil, has a production potential of 1.2-10² m³ /day of biodiesel, 2.93-10 Nm³ /day of methane and 1.89-10⁴ kWh/day of electricity. Despite being a significant and high potential, which may reduce the financial expenses of the industry regarding the purchase of energy from concessionaires, it is not able to promote its energy self-sufficiency. At the same time, it would be necessary to add the energy production potential of the rice husk gasification syngas highlighted in other studiem.
Słowa kluczowe
Rocznik
Strony
130--136
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Federal University of Pelotas, Brazil
  • Federal University of Pelotas, Brazil
  • Silesian University of Technology, Institute of Thermal Technology, Poland
  • Wroclaw University of Informatics, Poland, Foundation for Research on Development and Innovation, Poland
  • Wrocław University of Science and Technology, Poland
  • Technical University Varna, Bulgaria
  • Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • Technical University of Varna, Transport Engineering and Technologies department, 9010 Varna, Bulgaria
Bibliografia
  • 1. Almeida, E., Andrade, C., Santos, O. Dos, 2018. Biomethanol Production from the Glycerol Byproduct of the Biodiesel Production Process, a Proposition, DEStech Trans. Eng. Technol. Res. DOI: 10.12783/dtetr/ecame2017/18426
  • 2. ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Anuário Estatístico 2018, n.d.
  • 3. ANVISA – Agência Nacional de Vigilância Sanitária. Resolução no 482, de 1999. Regulamento Técnico, no196-E, Brasília: Diário Oficial da União., n.d.
  • 4. Bastos, R.G., Severo, M.Q., Volpato, G.Q., Jacob-Lopes, E., Zepka, L.Q., Queiroz, M.I., 2010. Bioconversion of nitrogen in the rice parboiling wastewater by incorporation in biomass of the cyanobacterium Aphanothece microscopica Nägeli, J. Appl. Sci., 5, 258-264, DOI: 10.4136/ambi-agua.167
  • 5. Creutzig, F., Ravindranath, N.H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., Chum, H., Corbera, E., Delucchi, M., Faaij, A., Fargione, J., Haberl, H., Heath, G., Lucon, O., Plevin, R., Popp, A., Robledo-Abad, C., Rose, S., Smith, P., Stromman, A., Suh, S., Masera, O., 2015. Bioenergy and climate change mitigation: an assessment, GCB Bioenergy, 7, 916-944, DOI: 10.1111/gcbb.12205
  • 6. Evangelista, J.P.C., 2012. Obtenção de biodiesel através da transesterificação do óleo de farelo de arroz utilizando ki/Al2O3, Universidade Federal do Rio Grande do Norte. 7. Faria, O.L.V., Koetz, P.R., Santos, M.S. dos, Nunes, W.A., 2006. Remoção de fósforo de efluentes da parboilização de arroz por absorção biológica estimulada em reator em batelada sequencial (RBS). Ciência e Tecnol. Aliment., 26, 309-317, DOI: 10.1590/S0101-20612006000200013
  • 7. Faria, O.L.V., Koetz, P.R., Santos, M.S. dos, Nunes, W.A., 2006. Remoção de fósforo de efluentes da parboilização de arroz por absorção biológica estimulada em reator em batelada sequencial (RBS). Ciência e Tecnol. Aliment., 26, 309-317, DOI: 10.1590/S0101-20612006000200013
  • 8. Gil de los Santos, D., Gil Turnes, C., Rochedo Conceição, F., 2012. Bioremediation of Parboiled Rice Effluent Supplemented with Biodiesel-Derived Glycerol Using Pichia pastoris X-33. Sci. World J., 2012, 1-5, DOI: 10.1100/2012/492925
  • 9. González-González, L.M., Correa, D.F., Ryan, S., Jensen, P.D., Pratt, S., Schenk, P.M., 2018. Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling, Renew. Sustain. Energy Rev., 82, 1137-1148, DOI: 10.1016/j.rser.2017.09.091
  • 10. Hansen, C.F., Hernandez, A., Mullan, B.P., Moore, K., Trezona-Murray, M., King, R.H., Pluske, J.R., 2009. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter, Anim. Prod. Sci., 49, 154, DOI: 10.1071/EA08210
  • 11. Ingaldi, M., Klimecka-Tatar, D., 2020. People’s attitude to energy from hydrogen–from the point of view of modern energy technologies and social responsibility, Energies 13, 6495, DOI: 10.3390/en13246495
  • 12. Jiang, L., Ni, S., Liu, G., Xu, X., 2017. Photocatalytic hydrogen production over Aurivillius compound Bi3TiNbO9 and its modifications by Cr/Nb co-doping, Appl. Catal. B Environ., 217, 342-352, DOI: 10.1016/j.apcatb.2017.06.012
  • 13. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L., 2011. The anaerobic digestion of solid organic waste, Waste Manag., 31, 1737- 1744, DOI: 10.1016/j.wasman.2011.03.021
  • 14. Khalil, M., Berawi, M.A., Heryanto, R., Rizalie, A., 2019. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia, Renew. Sustain. Energy Rev., 105, 323-331, DOI: 10.1016/j.rser.2019.02.011
  • 15. Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I.K., Papanikolaou, S., Kwan, T.H., Lin, C.S.K., 2014. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers, Chem. Soc. Rev., 43, 2587, DOI: 10.1039/c3cs60293a
  • 16. Lourenço, V.A., 2020. Produção de biocombustíveis a partir de subprodutos, resíduos e efluentes da indústria arrozeira: Biodiesel e metano, Federal University of Pelotas. 16. Lourenço, V.A., Nadaleti, W.C., Vieira, B.M., Leandro, D., Silva, M.A. da, Santos, R.D.F., Santos, G.B. dos, Valentini, M.H.K., Schoeler, G.P., Koschier, I.F., Duarte, V.H., Corrêa, A.G., 2019. Produção de biogás via codigestão anaeróbia de efluente da parboilização de arroz e resíduos orgânicos, Rev. Ibero-Americana Ciências Ambient., 10, 219- 231, DOI: 10.6008/CBPC2179-6858.2019.004.0017
  • 17. Lourenço, V.A., Nadaleti, W.C., Vieira, B.M., Leandro, D., Silva, M.A. da, Santos, R.D.F., Santos, G.B. dos, Valentini, M.H.K., Schoeler, G.P., Koschier, I.F., Duarte, V.H., Corrêa, A.G., 2019. Produção de biogás via codigestão anaeróbia de efluente da parboilização de arroz e resíduos orgânicos, Rev. Ibero-Americana Ciências Ambient., 10, 219- 231, DOI: 10.6008/CBPC2179-6858.2019.004.0017
  • 18. Macek, W., 2019. The delocalization of production to Poland, Prod. Eng. Arch., 23, 47-52, DOI: 10.30657/pea.2019.23.08
  • 19. Macek, W., Szala, M., Trembacz, J., Branco, R., Costa, J., 2020. Effect of non-zero mean stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars, Prod. Eng. Arch., 26, 167-173, DOI: 10.30657/pea.2020.26.30
  • 20. Nadaleti, W.C., 2019. Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning, Renew. Energy, 131, 55-72, DOI: 10.1016/j.renene.2018.07.014
  • 21. Nadaleti, W.C., Lourenço, V.A., Schoeler, G.P., Afonso, M., Santos, R.F., Vieira, B.M., Leandro, D., Silveira Quadro, M., 2018. Temperaturas mesófilas e termófilas na produção de biogás através de efluente da parboilização do arroz, Rev. Bras. Eng. e Sustentabilidade, 5, 17, DOI: 10.15210/rbes.v5i1.12540 Nadaleti, W.C., Lourenço, V.A., Schoeler, G.P., Santos, R.D.F., Afonso, M.D.S., Vieira, B.M., Leandro, D., Oliveira, A.F. de M., Koschier, I.F., 2019. Produção de metano via codigestão anaeróbia de efluentes das indústrias de arroz parboilizado e laticínios, Rev. Ibero-Americana Ciências Ambient, 10, 146-156, DOI: 10.6008/CBPC2179- 6858.2019.001.0012
  • 22. Nadaleti, W.C., Lourenço, V.A., Schoeler, G.P., Santos, R.D.F., Afonso, M.D.S., Vieira, B.M., Leandro, D., Oliveira, A.F. de M., Koschier, I.F., 2019. Produção de metano via codigestão anaeróbia de efluentes das indústrias de arroz parboilizado e laticínios, Rev. Ibero-Americana Ciências Ambient, 10, 146-156, DOI: 10.6008/CBPC2179- 6858.2019.001.0012
  • 23. Okoye, P.U., Hameed, B.H., 2016. Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production, Renew. Sustain. Energy Rev., 53, 558-574, DOI: 10.1016/j.rser.2015.08.064
  • 24. Okunuki, S., Kawaharasaki, M., Tanaka, H., Kanagawa, T., 2004. Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor, Water Res. 38, 2433-2439, DOI: 10.1016/j.watres.2004.02.008
  • 25. Papanikolaou, S., Kampisopoulou, E., Blanchard, F., Rondags, E., Gardeli, C., Koutinas, A.A., Chevalot, I., Aggelis, G., 2017. Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides, Eur. J. Lipid Sci. Technol., 119, 1600507, DOI: 10.1002/ejlt.201600507
  • 26. Paraginski, R.T., Ziegler, V., Talhamento, A., Elias, M.C., Oliveira, M. de, 2014. Propriedades tecnológicas e de cocção em grãos de arroz condicionados em diferentes temperaturas antes da parboilização, Brazilian J. Food Technol., 17, 146-153, DOI: 10.1590/bjft.2014.021
  • 27. Queiroz, M.I., Lopes, E.J., Zepka, L.Q., Bastos, R.G., Goldbeck, R., 2007. The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor, Bioresour. Technol., 98, 2163-2169, DOI: 10.1016/j.biortech.2006.08.034
  • 28. Rajaeifar, M.A., Sadeghzadeh Hemayati, S., Tabatabaei, M., Aghbashlo, M., Mahmoudi, S.B., 2019. A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply, Renew. Sustain. Energy Rev., 103, 423-442, DOI: 10.1016/j.rser.2018.12.056
  • 29. Rodrigues Silveira, A.R., Nadaleti, W.C., Przybyla, G., Belli Filho, P., 2019. Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy, Renew. Energy, 134, 1003-1016, DOI: 10.1016/j.renene.2018.11.063
  • 30. Sharif, A., Raza, S.A., Ozturk, I., Afshan, S., 2019. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations, Renew. Energy, 133, 685-691, DOI: 10.1016/j.renene.2018.10.052
  • 31. Sinha, S., Agarwal, A.K., Garg, S., 2008. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization, Energy Convers. Manag., 49, 1248-1257, DOI: 10.1016/j.enconman.2007.08.010
  • 32. Sistema Granjatec de Extração de Óleo de Farelo de Arroz - Extração de Óleo e Produção de Farelo [WWW Document], n.d. URL https://granjatec.com.br/sistema-granjatec-de-extracao-de-oleo-defarelo-de-arroz/ (accessed 2.13.21).
  • 33. Speece, R.E., 1996. Anaerobic Biotechnology for Industrial Wastewaters, Archae Press.
  • 34. Spinosa, W.A., Santos Júnior, V. Dos, Galvan, D., Fiorio, J.L., Gomez, R.J.H.C., 2016. Syrup production via enzymatic conversion of a byproduct (broken rice) from rice industry, Acta Sci. Technol., 38, 13, DOI: 10.4025/actascitechnol.v38i1.26700
  • 35. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2002. Wastewater Engineering: Treatment and Reuse, McGraw-Hill
  • 36. Tutak, M., Brodny, J., Siwiec, D., Ulewicz, R., Bindzár, P., 2020. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential, Energies, 13, 6643, DOI: 10.3390/en13246643
  • 37. UNFCCC, Approved Methodologies for Small Scale CDM Project Activities, Type Ill, AMS lll.H Methane recovery in wastewater treatment, Version 16.0, 2012., n.d.
  • 38. Ulewicz, R., Siwiec, D., Pacana, A., Tutak, M., Brodny, J. (2021) Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies, 14, 2386. DOI:10.3390/en14092386U
  • 39. Varão, L.H.R., Silva, T.A.L., Zamora, H.D.Z., Pasquini, D., 2017. Vantagens e limitações do sebo bovino enquanto matéria-prima para a indústria brasileira de biodiesel, Holos, 7, 39, DOI: 10.15628/holos.2017.5010
  • 40. Yang, F., Hanna, M., Sun, R., Hanna, M.A., 2012. DigitalCommons@University of Nebraska-Lincoln Value-added uses for crude glycerol-a byproduct of biodiesel production Value-added uses for crude glycerol-a byproduct of biodiesel production.
  • 41. Zullaikah, S., Lai, C.-C., Vali, S.R., Ju, Y.-H., 2005. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour, Technol, 96, 1889-1896, DOI: 10.1016/j.biortech.2005.01.028
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa4b1d02-1cd2-47bb-83b9-b7cb52a15637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.