PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size-selective microzooplankton grazing on the phytoplankton in the Curonian Lagoon (SE Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates at two sites: freshwater (Nida) and brackish water (Smiltyne) in the Curonian Lagoon (SE Baltic Sea). Using the size-fractionation approach and dilution experiments, we found that the microzooplankton community was able to remove up to 78% of nanophytoplankton (2–20 μm) standing stock and 130% of the total daily primary production in the brackish waters of the lagoon, and up to 83% of standing stock and 76% of the primary production of picophytoplankton (0.2–2 μm) in the freshwater part. The observed differences were attributed to the changes in ciliate community size and trophic structure, with larger nano-filterers (30–60 μm) dominating the brackish water assemblages and pico-nano filterers (<20 μm and 20–30 μm) prevailing in the freshwater part of the lagoon.
Czasopismo
Rocznik
Strony
292--301
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
autor
  • Open Access Centre for Marine Research, Klaipėda University, Klaipėda, Lithuania
  • Marine Science and Technology Centre, Klaipėda University, Klaipėda, Lithuania
autor
  • Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
autor
  • Finnish Environment Institute (SYKE), Marine Research Centre, Helsinki, Finland
Bibliografia
  • [1] Aberle, N., Lengfellner, K., Sommer, U., 2007. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150 (4), 668—681.
  • [2] Ayo, B., Santamaria, E., Latatu, A., Artolozaga, I., Azua, I., Iriberri, J., 2001. Grazing rates of diverse morphotypes of bacterivorous ciliates feeding on four allochthonous bacteria. Lett. Appl. Microbiol. 33 (6), 455—460.
  • [3] Barlow, R. G., Mantoura, R. F. C., Cummings, D. G., Fileman, T. W., 1997. Pigment chemotaxonomic distributions of phytoplankton during summer in the western Mediterranean. Deep-Sea Res. Pt. II 44 (3—4), 833—850.
  • [4] Burkill, P. H., Mantoura, R. F. C., Lewellyn, C. A., Owens, N. J. P., 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93, 581—590.
  • [5] Burkovskii, I. V., 1976. Ecology of the White Sea Tintinnida (Ciliata). Zool. J. 55, 497—507.
  • [6] Calbet, A., 2008. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325—331.
  • [7] Calbet, A., Saiz, E., 2013. Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J. Plankton Res. 35 (6), 1183—1191.
  • [8] Dailidienė, I., Davulienė, L., 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984—2005. J. Mar. Syst. 74 (S), 20—29.
  • [9] Dzierzbicka-Głowacka, L., Kalarus, M., Musialik-Koszarowska, M., Lemieszek, A., Żmijewska, M.I., 2015. Seasonal variability in the population dynamics of the main mesozooplankton species in the Gulf of Gdańsk (southern Baltic Sea): production and mortality rates. Oceanologia 57 (1), 78—85, http://dx.doi.org/10.1016/j.oceano.2014.06.001.
  • [10] Fenchel, T., 1987. Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists. Springer-Verlag, Berlin, Heidelberg, 197 pp.
  • [11] Ferrarin, C., Razinkovas, A., Gulbinskas, S., Umgiesser, G., Bliūdžiutė, L., 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611 (1), 133—146.
  • [12] Foissner, W., Berger, H., 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35 (2), 375—482.
  • [13] Gaedke, U., Wickham, S., 2004. Ciliate dynamics in response to changing biotic and abiotic conditions in a large, deep lake (Lake Constance). Aquat. Microb. Ecol. 34 (3), 247—261.
  • [14] Gallegos, C. L., 1989. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol.-Prog. Ser. 57, 23—33.
  • [15] Gallegos, C. L., Vant, W. N., Safi, K. A., 1996. Microzooplankton grazing of phytoplankton in Manukau Harbour, New Zealand. New Zeal. J. Mar. Freshwater Res. 30 (3), 423—434.
  • [16] Gasiūnaitė, Z. R., 2000. Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea). Int. Rev. Hydrobiol. 85 (5—6), 653—661.
  • [17] Gasiūnaitė, Z. R., Cardoso, A. C., Heiskanen, A. S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaitytė, R., Purina, I., Razinkovas, A., Sagert, S., Schubert, H., Wasmund, N., 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuar. Coast. Shelf Sci. 65 (1—2), 239—252.
  • [18] Gasiūnaitė, Z. R., Daunys, D., Olenin, S., Razinkovas, A., 2008. The Curonian Lagoon. In: Schiewer, U. (Ed.), Ecology of Baltic Coastal Waters. Ecological Studies 197. Springer-Verlag, Berlin, Heidelberg, 197—215.
  • [19] Gifford, D. J., 1988. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Mar. Ecol.-Prog. Ser. 47, 249—258.
  • [20] Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Berlin, 419 pp.
  • [21] Grinienė, E., 2013. Functional role of plankton ciliates in a eutrophic coastal lagoon. (Ph.D. thesis). Klaipėda Univ., 123 pp.
  • [22] Grinienė, E., Mažeikaitė, S., Gasiūnaitė, Z. R., 2011. Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40 (4), 86—95.
  • [23] Hansen, B., Bjørnsen, P. K., Hansen, P. J., 1994. Prey size selection in planktonic zooplankton. Limnol. Oceanogr. 39 (2), 395—403.
  • [24] James, M. R., Hall, J. A., 1998. Microzooplankton grazing in different water masses associated with the subtropical convergence round the South Island, New Zealand. Deep-Sea Res. Pt. I 45 (10), 1689—1707.
  • [25] Jonsson, P. R., 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol.-Prog. Ser. 33, 265—277.
  • [26] Kivi, K., Setälä, O., 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar. Ecol.-Prog. Ser. 119, 125—137.
  • [27] Krevš, A., Koreivienė, J., Paškauskas, R., 2007. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Waters Bull. 1 (1), 17—26.
  • [28] Landry, M. R., Calbet, A., 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49 (1), 51—57.
  • [29] Landry, M. R., Hassett, R. P., 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283—288.
  • [30] Landry, M. R., Kirshtein, J., Constantiou, J., 1995. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol.-Prog. Ser. 120, 53—63.
  • [31] Lehrter, J. C., Pennock, J. R., McManus, G. B., 1999. Microzooplankton grazing and nitrogen excretion across a surface estuarine-coastal interface. Estuaries 22 (1), 113—125.
  • [32] Lignell, R., Seppälä, J., Kuuppo, P., Tamminen, T., Andersen, T., Gismervik, I., 2003. Beyond bulk properties: responses of coastal summer plankton communities to nutrient enrichment in the northern Baltic Sea. Limnol. Oceanogr. 48 (1), 189—209.
  • [33] Lindholm, T., 1985. Mesodinium rubrum — a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3, 1—48.
  • [34] Mažeikaitė, S. I., 1978. Zooplankton of the northern part of the Curonian Lagoon in 1974 and 1975. Acad. Sci. Lithuanian SSR 64, 55—56, (in Russian).
  • [35] Mažeikaitė, S. I., 2003. Freshwater Plankton Heterotrophic Protists of Lithuania. Press of the Botany Institute, Vilnius, 222 pp., (in Lithuanian).
  • [36] McManus, G. B., Ederington-Cantrell, M. C., 1992. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Mar. Ecol.-Prog. Ser. 87, 77—85.
  • [37] Mironova, E. I., Telesh, I. V., Skarlato, S. O., 2012. Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34 (3), 208—220.
  • [38] Modigh, M., Franzè, G., 2009. Changes in phytoplankton and microzooplankton populations during grazing experiments at a Mediterranean coastal site. J. Plankton Res. 31 (8), 853—864.
  • [39] Moigis, A. G., Gocke, K., 2003. Primary production of phytoplankton estimated by means of the dilution method in coastal water. J. Plankton Res. 25 (10), 1291—1300.
  • [40] Quinlan, E. L., Jett, C. H., Philips, E. J., 2009. Microzooplankton grazing and the control of phytoplankton biomass in the Suwannee River estuary, USA. Hydrobiologia 632 (1), 127—137.
  • [41] Rassoulzadegan, F., Laval-Peuto, M., Sheldon, R. W., 1988. Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159, 75—88.
  • [42] Reckermann, M., 1996. Ultraphytoplankton and protozoan communities and their interactions in different marine pelagic ecosystems (Arabian Sea and Baltic Sea). (Ph.D. thesis). Rostock Univ., 152 pp.
  • [43] Schmoker, C., Hernández-León, S., Calbet, A., 2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35 (4), 691—706.
  • [44] Setälä, O., Kivi, K., 2003. Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32 (3), 287—297.
  • [45] Stoecker, D. K., Nejstgaard, J. C., Madhusoodhanan, R., Pohnert, G., Wolfram, S., Jakobsen, H. H., Šulčius, S., Larsen, A., 2015. Underestimation of microzooplankton grazing in dilution experiments due to inhibition of phytoplankton growth. Limnol. Oceanogr. 60 (4), 1426—1438.
  • [46] Strom, S. L., Macri, E. L., Olson, M. B., 2007. Microzooplankton grazing in the coastal Gulf of Alaska: variations in top down control of phytoplankton. Limnol. Oceanogr. 52 (4), 1480—1494.
  • [47] Strüder-Kypke, M. C., Kypke, E. R., Agatha, S., Warwick, J., Motagnes, D. J. S., 2003. The “user friendly” guide to coastal planktonic ciliates. The Planktonic Ciliate Project by University of Liverpool, http://www.liv.ac.uk/ciliate/intro.htm.
  • [48] Sun, J., Feng, Y., Zhang, Y., Hutchins, D. A., 2007. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiologia 589 (1), 127—139.
  • [49] Šulčius, S., Pilkaitytė, R., Mazur-Marzec, H., Kasperovičienė, J., Ezhova, E., Błaszczyk, A., Paškauskas, R., 2015. Increased risk of exposure to microcystins in the scum of the filamentous cyanobacterium Aphanizomenon flos-aquae accumulated on the western shoreline of the Curonian Lagoon. Mar. Pollut. Bull. 99 (1—2), 264—270.
  • [50] Twiss, M. R., Smith, D. E., 2012. Size-fractionated phytoplankton growth and microzooplankton grazing rates in the upper St. Lawrence River. River Res. Appl. 28 (7), 1047—1053.
  • [51] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen/Int. Verein. Theor. Angew. Limnol. 9, 1—38.
  • [52] Verity, P. G., Stoecker, D. K., Sieracki, M. E., Nelson, J. R., 1993. Microzooplankton grazing of primary production at 1408W in the equatorial Pacific. Deep-Sea Res. Pt. II 43 (4—6), 1227—1256.
  • [53] Weisse, T., 1990. Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance. Hydrobiologia 191 (1), 111—122.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa4a202e-85ed-443e-aa17-fa87476f71cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.