PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioplastic packaging materials in circular economy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Materiały opakowaniowe z biotworzyw w gospodarce o obiegu zamkniętym
Języki publikacji
EN
Abstrakty
EN
Background: The European strategy for plastics focuses on adjusting the EU regulations to the fulfilment of circular economy tasks. Circular economy is an approach that will soon lead to considerable changes in numerous branches of modern economy. To a large extent, they will also affect the packaging industry. Methods: A particular interest has been attracted by aliphatic polyesters such as polylactide (PLA) and polyhydroxyalkanoates (PHA). This work presents the bioplastic market and the selected examples of the latest solutions in bioplastic packaging materials. In the near future, the presented bioplastics have a chance to become some of the most desirable packaging materials Results and conclusion: Bioplastics seem to be an alternative to conventional plastics used for packaging production. As the focus shifts to creation of sustainable environment and prevention of plastic waste disposal in the environment, the production of bioplastics has gained much attention due to their biodegradability.
PL
Wstęp: Europejska strategia dotycząca tworzyw sztucznych skupia się na dostosowywaniu unijnych regulacji do realizacji zasad in circular economy. Circular economy to podejście, w ramach którego w niedługim czasie nastąpią znaczące zmiany w wielu gałęziach wspólczesnej gospodarki. Będą one dotyczyły w dużym stopniu branży opakowań. Metody: Duzym zaniteresowaniem cieszą się poliestry alifatyczne jakie jak polilaktyd (PLA) oraz polihydroksyalkaniany (PHA).W niniejszej pracy przedstawiono rynek biotworzyw oraz wybrane przykłady najnowszych rowiązań w zakresie materiałów opakowaniowych z biotworzyw. Przedstawione biotworzywa w niedalekiej przyszłości mają szansę stać się jednym z najbardziej poządanych materiałów opakowaniowych. Wyniki i podsumowanie: Biotworzywa wydają się być alternatywą dla konwencjonalnych tworzyw sztucznych stosowanych do produkcji opakowań. Aby stworzyć zrównoważone środowisko i zapobiec utylizacji odpadów tworzyw sztucznych w środowisku, produkcja biotworzyw zyskała wiele uwagi ze względu na ich podatność na biodegradację.
Czasopismo
Rocznik
Strony
129--137
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Department of Industrial Products Quality and Ecology, Faculty of Commodity Science, Poznan University of Economics and Business, al. Niepodległości 10, 61-875 Poznan, Poland
Bibliografia
  • 1. Andrady A.L., Neal M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 1977-1984. http://doi.org/10.1098/rstb.2008.0304
  • 2. Auras R., Harte B., Selke S., 2004. An overview of polylactides as packaging materials. Macromolecular bioscience, 4(9), 835-864. http://doi.org/10.1002/mabi.200400043
  • 3. Ban W., Song, J., Argyropoulos, D.S., Lucia L.A., 2006. Improving the physical and chemical functionality of starch-derived films with biopolymers. Journal of Applied Polymer Science, 100(3), 2542-2548. http://doi.org/10.1002/app.23698
  • 4. Bilo F., Pandini S., Sartore L., Depero L.E., Gargiulo G., Bonassi A., Bontempi E., 2018. A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200, 357-368. http://doi.org/10.1016/j.jclepro.2018.07.252
  • 5. Byun Y., Kim Y.T., 2014. Utilization of bioplastics for food packaging industry. In Innovations in Food Packaging (Second Edition) 369-390. http://doi.org/10.1016/B978-0-12-394601-0.00015-1
  • 6. Brodin M., Vallejos M., Opedal M.T., Area M.C., Chinga-Carrasco G., 2017. Lignocellulosics as sustainable resources for production of bioplastics-A review. Journal of Cleaner Production, 162, 646-664. http://doi.org/10.1016/j.jclepro.2017.05.209
  • 7. Burniol-Figols A., Varrone C., Daugaard A.E., Le S.B., Skiadas I.V., Gavala H.N., 2018. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1, 3-propanediol to PHA in mixed microbial consortia. Water research, 128, 255-266. http://doi.org/10.1016/j.watres.2017.10.046
  • 8. Cooper T.A., 2013. Developments in plastic materials and recycling systems for packaging food, beverages and other fast moving consumer goods. In Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG) (pp. 58-107). http://doi.org/10.1533/9780857098979.58
  • 9. DiGregorio B.E., 2009. Biobased performance bioplastic: Mirel. Chemistry & Biology, 16(1), 1-2. http://doi.org/10.1016/j.chembiol.2009.01.001
  • 10. Domene-López D., Guillén M.M., Martin-Gullon I., García-Quesada J.C., Montalbán M.G., 2018. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate polymers, 202, 299-305. http://doi.org/10.1016/j.carbpol.2018.08.137
  • 11. Domínguez-Escribá L., Porcar M., 2010. Rice straw management: the big waste. Biofuels, Bioproducts and Biorefining, 4(2), 154-159. http://doi.org/10.1002/bbb.196
  • 12. Dubey S.P., Thakur V.K., Krishnaswamy S., Abhyankar H.A., Marchante V., Brighton J.L., 2017. Progress in environmental friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 146, 655-663. http://doi.org/10.1016/j.vacuum.2017.07.009
  • 13. Emadian S.M., Onay T.T., Demirel B., 2017. Biodegradation of bioplastics in natural environments. Waste management, 59, 526-536. http://doi.org/10.1016/j.wasman.2016.10.006
  • 14. European bioplastic, 2015. http://en.europeanbioplastics.org/technologymaterials/materials (accessed 2018.10.02).
  • 15. European Commission. 2015. Bio-based products and processing, http://ec.europa.eu/research/bioeconomy/index.cfm/ (accessed 2018.09.20).
  • 16. Gahlawat G., Soni S.K., 2017. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresource technology, 243, 492-501. http://doi.org/10.1016/j.biortech.2017.06.139
  • 17. Ghosh S., Gnaim R., Greiserman S., Fadeev L., Gozin M., Golberg A., 2018. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresource technology, 271, 2019, 166-173. http://doi.org/10.1016/j.biortech.2018.09.108
  • 18. Ghisellini P., Cialani C., Ulgiati S., 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner production, 114, 11-32. http://doi.org/10.1016/j.jclepro.2015.09.007
  • 19. Luchese C.L., Spada J.C., Tessaro I.C., 2017. Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619-626. http://doi.org/10.1016/j.indcrop.2017.09.020
  • 20. Merrild H., Larsen A.W., Christensen T.H., 2012. Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste management, 32(5), 1009-1018. http://doi.org/10.1016/j.wasman.2011.12.025
  • 21. Mohanty A.K., Misra M., Drzal L.T., 2002. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26. http://doi.org/10.1023/A:1021013921916
  • 22. Morgan-Sagastume F., Karlsson A., Johansson P., Pratt S., Boon N., Lant P., Werker A., 2010. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Research, 44(18), 5196-5211. http://doi.org/10.1016/j.watres.2010.06.043
  • 23. Mustafa B., Hajdari A., Pieroni A., Pulaj B., Koro X., Quave C.L., 2015. A crosscultural comparison of folk plant uses among Albanians, Bosniaks, Gorani and Turks living in south Kosovo. Journal of ethnobiology and ethnomedicine, 11(1), 39. http://doi.org/10.1186/s13002-015-0023-5
  • 24. Murariu M., Dubois P., 2016. PLA composites: From production to properties. Advanced drug delivery reviews, 107, 17-46. http://doi.org/10.1016/j.addr.2016.04.003
  • 25. Nampoothiri K.M., Nair N.R., John R.P., 2010. An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22), 8493-8501. http://doi.org/10.1016/j.biortech.2010.05.092
  • 26. Ntaikou I., Kourmentza C., Koutrouli E.C., Stamatelatou K., Zampraka A., Kornaros M., Lyberatos G., 2009. Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresource Technology, 100(15), 3724-3730. http://doi.org/10.1016/j.biortech.2008.12.001
  • 27. Ostafinska A., Fortelný I., Hodan J., Krejčíková S., Nevoralová M., Kredatusová J., Šlouf M., 2017. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the mechanical behavior of biomedical materials, 69, 229-241. http://doi.org/10.1016/j.jmbbm.2017.01.015
  • 28. Panseri S., Martino P.A., Cagnardi P., Celano G., Tedesco D., Castrica M., Chiesa L.M., 2018. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. Food chemistry, 249, 22-29. http://doi.org/10.1016/j.foodchem.2017.12.067
  • 29. Pathak N., Austin-Tse C.A., Liu Y., Vasilyev A., Drummond I.A., 2014. Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Molecular biology of the cell, 25(12), 1836-1844. http://doi.org/10.1091/mbc.e13-01-0033
  • 30. Peelman N., Ragaert P., De Meulenaer B., Adons D., Peeters R., Cardon L., Devlieghere F., 2013. Application of bioplastics for food packaging. Trends in Food Science&Technology, 32(2), 128-141. http://doi.org/10.1016/j.tifs.2013.06.003
  • 31. PlasticsEurope, 2017. Plastics - the facts 2017. www.plasticseurope.org (accessed 2018.10.02).
  • 32. Plastics Europe, 2016. Plastics - the Facts 2016. http://www.plasticseurope.org (accessed 2018.10.02).
  • 33. Przybytek A., Sienkiewicz M., Kucińska-Lipka J., Janik H., 2018. Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Industrial Crops and Products, 122, 375-383. http://doi.org/10.1016/j.indcrop.2018.06.016
  • 34. Ramakrishnan N., Sharma S., Gupta A., Alashwal B.Y., 2018. Keratin based bioplastic film from chicken feathers and its characterization. International journal of biological macromolecules, 111, 352-358. http://doi.org/10.1016/j.ijbiomac.2018.01.037
  • 35. Reddy M.V., Mawatari Y., Onodera R., Nakamura Y., Yajima Y., Chang Y.C., 2017. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P.palleronii. Bioresource technology, 234, 99-105. http://doi.org/10.1016/j.biortech.2017.03.008
  • 36. Perez P.J.A., 2018. Microblog retrieval challenges and opportunities (Doctoral dissertation, University of Glasgow). Printed Thesis Information: http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb3295409
  • 37. Sagnelli D., Hebelstrup K.H., Leroy E., Rolland-Sabaté A., Guilois S., Kirkensgaard J.J., Blennow A., 2016. Plantcrafted starches for bioplastics production. Carbohydrate polymers, 152, 398-408. http://doi.org/10.1016/j.carbpol.2016.07.039
  • 38. Sawant S.S., Salunke B.K., Kim B.S. 2018. Consolidated bioprocessing for production of polyhydroxyalkanotes from red algae Gelidium amansii. International journal of biological macromolecules, 109, 1012-1018. http://doi.org/10.1016/j.ijbiomac.2017.11.084
  • 39. Soroudi A., Jakubowicz I., 2013. Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49(10), 2839-2858. http://doi.org/10.1016/j.eurpolymj.2013.07.025
  • 40. Stahel W.R., 2016. The circular economy. Nature News, 531(7595), 435. http://doi.org/10.1038/531435a
  • 41. Spiridon I., Tanase C.E., 2018. Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International journal of biological macromolecules, 114, 855-863. http://doi.org/10.1016/j.ijbiomac.2018.03.140
  • 42. Thakur S., Chaudhary J., Sharma B., Verma A., Tamulevicius S., Thakur V.K., 2018. Sustainability of Bioplastics: Opportunities and Challenges. Current Opinion in Green and Sustainable Chemistry. http://doi.org/10.1016/j.cogsc.2018.04.013
  • 43. Wijeyekoon S., Carere C.R., West M., Nath S., Gapes D., 2018. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water research, 140, 1-11. http://doi.org/10.1016/j.watres.2018.04.017
  • 44. Ullah A., Vasanthan T., Bressler D., Elias A.L., Wu J., 2011. Bioplastics from feather quill. Biomacromolecules, 12(10), 3826-3832. http://doi.org/10.1021/bm201112n
  • 45. United Nations Environment Programme. 2014. Plastic waste causes financial damage of US$13 billion to marine ecosystems each year as concern grows over microplastics. http://www.unep.org/NewsCentre/default.aspx?DocumentID=2791 (accessed 2018.09.20).
  • 46. Qian Y., Qiu X., Zhong X., Zhang D., Deng Y., Yang D., Zhu S., 2015. Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics. Industrial & Engineering Chemistry Research, 54(48), 12025-12030. http://doi.org/10.1021/acs.iecr.5b03360
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa487bf4-661c-4c92-bde7-9347a3cd46b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.