PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characterization and performance analysis of Kesambi branch biomass briquettes: A study on particle size effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the characterization and performance of biomass briquettes produced from the branches of the Kesambi tree (Schleichera oleosa), a previously underutilized biomass resource in East Nusa Tenggara, Indonesia. The increasing demand for Kesambi wood in traditional sei meat smoking has raised concerns about the sustainability of tree resources, highlighting the need for alternative fuel solutions. Utilizing Kesambi branches as briquette material could alleviate pressure on tree trunks while preserving the unique qualities of sei meat. The research focuses on the effects of particle size on the briquette’s physical and thermal properties. Kesambi branches were ground to different particle sizes (20, 40, and 60 mesh) and mixed with a tapioca flour binder. Briquette properties were analyzed through density, compressive strength, moisture content, ash content, volatile matter, and fixed carbon, using ASTM standards. Results indicated that smaller particle sizes resulted in higher density and compressive strength, enhancing combustion efficiency. The study also applied various empirical models to predict the higher heating value (HHV) based on proximate analysis data, evaluated through AIC and BIC for model accuracy. This research demonstrates that Kesambi branch briquettes not only provide a sustainable fuel alternative but also contribute to local economic development by creating job opportunities in biomass processing. Ultimately, these innovations support the conservation of Kesambi tree resources while promoting environmental sustainability in energy production.
Rocznik
Strony
213--222
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Dry Land, State Agricultural Politechnic, Penfui, Kupang, Indonesia
  • Department of Agriculture Engineering, Artha Wacana Christian University, Adisucipto st, Kupang, Indonesia
  • Department of Agriculture Engineering, Artha Wacana Christian University, Adisucipto st, Kupang, Indonesia
  • Department of Health Public, Nusa Cendana University, Penfui, Kupang, Indonesia
Bibliografia
  • 1. Calle Mendoza, I. J., Gorritty Portillo, M. A., Ruiz Mayta, J. G., Alanoca Limachi, J. L., Torretta, V., & Ferronato, N. (2024). Social acceptance, emissions analysis and potential applications of paper-waste briquettes in Andean areas. Environmental Research, 241. https://doi.org/10.1016/j.envres.2023.117609
  • 2. Cheng, Y. Qun, Leible, M., Rigling, M., Weiss, J., Zhang, Y. Yan, & Gibis, M. (2024). Effects of potential key substances in woodchips smoldering smoke on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in Frankfurter sausages. Food Research International, 190, 114633. https://doi.org/10.1016/J.FOODRES.2024.114633
  • 3. Dethan, J. J. S., Bale-Therik, J. F., Telupere, F. M. S., Lalel, H. J. D., & Adisasmito, S. (2024a). Characteristics of Kesambi leaf torrefaction biomass. AIP Conference Proceedings, 3073(1). https://doi.org/10.1063/5.0193717
  • 4. Dethan, J. J. S., Haba Bunga, F. J., Ledo, M. E. S., & Abineno, J. C. (2024b). Characteristics of residence time of the torrefaction process on the results of pruning Kesambi Trees. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 13(1), 102. https://doi.org/10.23960/ jtep-l.v13i1.102-113
  • 5. Dethan, J.J.S., & Lalel, H. (2024). Optimization of particle size of torrefied Kesambi leaf and binder ratio on the quality of biobriquettes. Journal of Sustainable Development of Energy, Water and Environment Systems, 12(1), 1–21. https://doi.org/10.13044/j.sdewes.d12.0490
  • 6. Dethan, J.J.S. (2024). Evaluation of an empirical model for predicting the calorific value of biomass briquettes from candlenut shell and kesambi twigs. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 7(3), 253–264.
  • 7. Ding, J., Diao, E., Zhou, J., & Tarokh, V. (2021). On statistical efficiency in learning. IEEE Transactions on Information Theory, 67(4). https://doi.org/10.1109/TIT.2020.3047620
  • 8. Dobrzanski, E., Ferreira, E. S., Tiwary, P., Agrawal, P., Chen, R., & Cranston, E. D. (2024). Size-structure-property relationship of wood particles in aqueous and dry insulative foams. Carbohydrate Polymers, 335, 122077. https://doi.org/10.1016/J.CARBPOL.2024.122077
  • 9. Du, W., Roa, J., Hong, J., Liu, Y., Pei, Z., & Ma, C. (2021). Binder jetting additive manufacturing: effect of particle size distribution on density. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 143(9). https://doi.org/10.1115/1.4050306
  • 10. Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., & Jermiin, L. S. (2020). Sensitivity and specificity of information criteria. In Briefings in Bioinformatics 21(2). https://doi.org/10.1093/bib/bbz016
  • 11. Falk, J., Hannl, T. K., Öhman, M., Hedayati, A., & Skoglund, N. (2023). Ash transformation during fixed-bed co-combustion of sewage sludge and agricultural residues with a focus on phosphorus. ACS Omega, 8(14). https://doi.org/10.1021/ acsomega.3c00415
  • 12. Fragoso, H. P., Pohlmann, J. G., MacHado, J. G. M. D. S., Vilela, A. C. F., & Osorio, E. (2019). Combustion behavior of granulated and pulverized coal in a PCI rig: Combustibility and pressure variation analysis. Journal of Materials Research and Technology, 8(6). https://doi.org/10.1016/j.jmrt.2019.09.055
  • 13. Gao, Q., Li, S., Yuan, Y., Zhao, Y., & Yao, Q. (2016). Role of minerals in the evolution of fine particulate matter during pulverized coal combustion. Energy and Fuels, 30(3). https://doi.org/10.1021/acs. energyfuels.5b02268
  • 14. Guillén, M. D., & Ibargoitia, M. L. (1998). New components with potential antioxidant and organoleptic properties, detected for the first time in liquid smoke flavoring preparations. Journal of Agricultural and Food Chemistry, 46(4). https://doi.org/10.1021/jf970952x
  • 15. Hedayati, A., Falk, J., Borén, E., Lindgren, R., Skoglund, N., Boman, C., & Öhman, M. (2022). Ash transformation during fixed-bed combustion of agricultural biomass with a focus on potassium and phosphorus. Energy and Fuels, 36(7). https://doi.org/10.1021/acs.energyfuels.1c04355
  • 16. Hettiarachchi, C., & Mampearachchi, W. K. (2020). Effect of surface texture, size ratio and large particle volume fraction on packing density of binary spherical mixtures. Granular Matter, 22(1). https://doi.org/10.1007/s10035-019-0978-3
  • 17. Kapen, P. T., Tenkeu, M. N., Yadjie, E., & Tchuen, G. (2022). Production and characterization of environmentally friendly charcoal briquettes obtained from agriculture waste: case of Cameroon. International Journal of Environmental Science and Technology, 19(6). https://doi.org/10.1007/s13762-021-03497-7
  • 18. Khan, A. U., Jan, Q. M. U., Abas, M., Muhammad, K., Ali, Q. M., & Zimon, D. (2023). Utilization of biowaste for sustainable production of coal briquettes. Energies, 16(20). https//doi.org/103390/en16207025
  • 19. Kukuruzović, J., Matin, A., Kontek, M., Krička, T., Matin, B., Brandić, I., & Antonović, A. (2023). The effects of demineralization on reducing ash content in corn and soy biomass with the goal of increasing biofuel quality. Energies, 16(2). https://doi.org/10.3390/en16020967
  • 20. Lima, E., Hyde, R., & Green, M. (2021). Model selection for inferential models with high dimensional data: synthesis and graphical representation of multiple techniques. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79317-8
  • 21. Liu, F., Jiang, M., Sun, C., & Deng, G. (2015). On the size-dependent compressive resistance of bonded granules. Geotechnique Letters, 5(3). https://doi.org/10.1680/jgele.14.00093
  • 22. Ngangyo Heya, M., Romo Hernández, A. L., Foroughbakhch Pournavab, R., Ibarra Pintor, L. F., Díaz-Jiménez, L., Heya, M. S., Salas Cruz, L. R., & Carrillo Parra, A. (2022). Physicochemical characteristics of biofuel briquettes made from pecan (Carya illinoensis) pericarp wastes of different particle sizes. Molecules (Basel, Switzerland), 27(3). https://doi.org/10.3390/molecules27031035
  • 23. Nikiema, J., Asamoah, B., Egblewogbe, M. N. Y. H., Akomea-Agyin, J., Cofie, O. O., Hughes, A. F., Gebreyesus, G., Asiedu, K. Z., & Njenga, M. (2022). Impact of material composition and food waste decomposition on characteristics of fuel briquettes. Resources, Conservation and Recycling Advances, 15. https://doi.org/10.1016/j.rcradv.2022.200095
  • 24. Pang, L., Yang, Y., Wu, L., Wang, F., & Meng, H. (2019). Effect of particle sizes on the physical and mechanical properties of briquettes. Energies, 12(19). https://doi.org/10.3390/en12193618
  • 25. Setter, C., Ataíde, C. H., Mendes, R. F., & de Oliveira, T. J. P. (2021). Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environmental Science and Pollution Research, 28(7), 8215–8223. https://doi.org/10.1007/S11356-020-11124-0/ METRICS
  • 26. Wang, L., Skreiberg, Ø., Gronli, M., Specht, G. P., & Antal, M. J. (2013). Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 2: The importance of particle size. Energy and Fuels, 27(4). https://doi.org/10.1021/ef400041h
  • 27. Wang, Y., Guo, R., Pan, T., Fu, C., Lin, R., & Ma, Q. (2023). Particle size effect of pre-wet zeolites on autogenous shrinkage and mechanical properties of LECC. Developments in the Built Environment, 16. https://doi.org/10.1016/j.dibe.2023.100290
  • 28. Wang, Y., Wu, K., & Sun, Y. (2018). Effects of raw material particle size on the briquetting process of rice straw. Journal of the Energy Institute, 91(1), 153– 162. https://doi.org/10.1016/J.JOEI.2016.09.002
  • 29. Watanabe, M., Kubota, Y., Uebo, K., & Nomura, S. (2023). Effects of briquette blend on packing structure of fine coal portion. ISIJ International, 63(9). https://doi.org/10.2355/isijinternational. ISIJINT-2022-520
  • 30. Xie, F., Guo, L., Wang, Z., Tian, Y., Yue, C., Zhou, X., Wang, W., Xin, J., & Lü, C. (2023). Geochemical characteristics and socioeconomic associations of carbonaceous aerosols in coal-fueled cities with significant seasonal pollution pattern. Environment International, 179. https://doi.org/10.1016/j. envint.2023.108179
  • 31. Xu, C., Wei, K., Du, Z., & Ma, W. (2024). Effect of particle size on the properties of biomass gasification residue pellets used as a metallurgical-grade silicon reducing agent. Powder Technology, 435. https://doi.org/10.1016/j.powtec.2024.119406
  • 32. Yang, R. Y., Zou, R. P., Yu, A. B., & Choi, S. K. (2008). Characterization of interparticle forces in the packing of cohesive fine particles. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 78(3). https://doi.org/10.1103/ PhysRevE.78.031302
  • 33. Zhou, B., Luo, J., Quan, W., Lou, A., & Shen, Q. (2022). Antioxidant activity and sensory quality of bacon. Foods, 11(2). https://doi.org/10.3390/ foods11020236
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa445a08-4d03-4e29-97b0-74aef2ca570e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.