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Abstract. It is known that the spectrum of the spectral Sturm-Liouville problem on
an equilateral tree with (generalized) Neumann’s conditions at all vertices uniquely
determines the potentials on the edges in the unperturbed case, i.e. case of the zero
potentials on the edges (Ambarzumian’s theorem). This case is exceptional, and in
general case (when the Dirichlet conditions are imposed at some of the pendant vertices)
even two spectra of spectral problems do not determine uniquely the potentials on the
edges. We consider the spectral Sturm—Liouville problem on an equilateral tree rooted
at its pendant vertex with (generalized) Neumann conditions at all vertices except of
the root and the Dirichlet condition at the root. In this case Ambarzumian’s theorem
can’t be applied. We show that if the spectrum of this problem is unperturbed, the
spectrum of the Neumann-Dirichlet problem on the root edge is also unperturbed and
the spectra of the problems on the complimentary subtrees with (generalized) Neumann
conditions at all vertices except the subtrees’ roots and the Dirichlet condition at the
subtrees’ roots are unperturbed then the potential on each edge of the tree is 0 almost
everywhere.

Keywords: Sturm—Liouville equation, eigenvalue, equilateral tree, star graph,
Dirichlet boundary condition, Neumann boundary condition.
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1. INTRODUCTION

The following uniqueness theorem was proved by V. Ambarzumian in 1929 [1].

Theorem 1.1 (Ambarzumian). If the spectrum of the boundary value problem
=" +a(z)y = Ay,
y'(0)=y'(m) =0

with q(z) € C[0, 7] real-valued is 0 U {k*}3, then g(z) = 0.
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This theorem was the starting point of the Sturm—-Liouville inverse spectral the-
ory. The next step was made by G. Borg [3] who proved that the case considered
by V. Ambarzumian was exceptional and in general two spectra are needed to determine
the potential. Borg’s theorem is as follows. Denote by {5 }72, the spectrum of the
problem

—y" +q(z)y = Ay,
y'(0) — hy(0) =0, y'(m)+ Hy(m) =0,
where h € R, H € R and by {£,}72, the spectrum of the problem

—y" +q(z) = Ny,

y'(0) — hy(0) =0, y(m) = 0.

Theorem 1.2 ([3]). Let q(x) € L1(0,a) be real-valued. Then the two spectra {0},
and {&,}72., determine uniquely q(x) and the numbers h and H.

There is vast literature on generalizations of Borg’s theorem (see, e. g. [6,11,12]).
In some sense similar situation occurs in the case of the Sturm-Liouville problem on
a metric tree graph. There are generalizations on Borg’s theorem for trees [5,20] and
generalizations of Ambarzumian’s theorem for trees [7]. However, there is a difference
between Borg’s theorems for an interval and for a tree. If we choose a pendant vertex
as the root of the tree and consider the spectral problems with the Neumann condition
at the root and the spectral problem with the Dirichlet condition at the root then
according to [5,20] the spectra of the Neumann and the Dirichlet problems uniquely
determine the potential only on the root edge. Thus, even knowledge of two spectra
of problems for the whole tree is not sufficient to determine uniquely the potentials
on the edges except of the “Ambarzumian’s” case [7]. Ambarzumian’s theorem for
a tree is true only in the case of Neumann conditions at all the pendant vertices. Due
to results of [7] it is clear that the spectra of problems with the Neumann conditions
at the pendant vertices of a graph contain information on the form of the graph (see
[2,13] and [9] for the so-called geometric Ambarzumian’s theorem).

In present paper we consider the case where the Neumann conditions are imposed
at all but one pendant vertices of a tree, the Dirichlet condition at one of the pendant
vertices (at the root) and the generalized Neumann (continuity and Kirchhoff’s)
conditions at all the interior vertices. Together with this spectral problem, we consider
spectral problems for the subtrees obtained from the initial tree by deleting the root and
its incident edge. Also we consider the Neumann-Dirichlet problem at the root edge.
The aim is to recover the potentials of the Sturm—Liouville equations on the edges of
the initial tree using the spectra of these problems. Up to our knowledge such inverse
problem is not investigated at all even for a star graph. Only the case of P; graph was
considered in [18] (see [4] for three spectral problems). We prove that if the spectra
of the above problems are unperturbed (such as in the case of zero potentials on all
the edges) then these spectra uniquely determine the potentials on the edges (these
potentials are 0).
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After this brief review of the uniqueness results for inverse spectral Sturm—Liouville
problems important for us, we present in Section 2 the description of our problem and
give auxiliary results. In Section 3 we prove the uniqueness theorem which is the main
result of this paper. In Section 4 we describe applications of the main theorem to the
case of a P3 graph and to the case of a star graph.

2. STATEMENT OF THE PROBLEM AND AUXILIARY RESULTS

Let T be an equilateral tree with g edges denoted by e;, each of the length a. We denote
the vertices by v; and chose an arbitrary pendant vertex v; as the root and direct
all the edges away from this root. Let us describe the Neumann spectral problem as
follows. We consider the Sturm—Liouville equations on the edges

7y_;/+q](x)y] :)\yj’ j:]‘72""7g7 (2'1)

where g; € L(0,1) are real.
For an edge e; incident with a pendant vertex which is not the root, we impose
the Neumann condition at the pendant vertex:

y;(a) = 0. (2.2)

At each interior vertices we impose the continuity conditions

yj(a) = yk(0) (2.3)

for the incoming to v; edge e; and for all e, outgoing from v; and the Kirchhoff’s
conditions

yi(a) = yi(0), (2.4)
k

where the sum is taken over all edges e outgoing from v;.
At the root we impose the Neumann conditions

i(0) = 0. (25)
The following theorem was proved in [7].

Theorem 2.1. Suppose T is a finite tree with all edges of length a. Forr =1,2,...,
let {m,.} be a sequence of integers with lim, ., m, = co. If the set of eigenvalues for
problem (2.1)~(2.5) is nonnegative, and contains a subsequence {\,} with

Jim (3o = (Fmr)') =

then q;(x) = 0 for each j = 1,2,...,g.
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It is known also that this “Ambarzumian’s” case is exceptional. In other cases
knowledge of one spectrum is not sufficient to determine the potentials on the edges.
For example, in case of the Dirichlet conditions at the pendant vertices of a star graph
one needs additional information, e.g. the spectra of the Dirichlet problems on the
edges (see, e.g. [19]).

Let us consider another spectral problem on the same tree (which we call the
Dirichlet problem). We choose a pendant vertex v, as the root of the tree T' and
impose the Dirichlet condition at the root

y1(0) = 0. (2.6)

The conditions at all the other vertices are such as in (2.2)—(2.4).

If the potentials are the same on all edges and are symmetric with respect to the
midpoint of an edge: g;(a—2) = ¢;(x) we have the following result (see Corollary 6.3.10
in [17]).

Theorem 2.2. Let the potentials on the edges be the same and symmetric with respect
to the midpoint of the edge. Then eigenvalues of the Neumann problem (2.1)—(2.5),
counted with multiplicities are the zeros of the entire function

¢(>‘) = 3_1()‘7a)P(C()‘7a))’

where s(\,x) is the solution of equation (2.1) which satisfies the initial conditions
s(A,0) =s'"(A\,0) —1=0, c¢(\ z) is the solution of equation (2.1) which satisfies the
initial conditions ¢(\,0) —1 = ¢ (A, 0) =0,

P(z) :=det(zR — A),
A is the adjacency matriz and R = diag{d(v1),d(v2),...,d(vp) is the degree matriz.

In case of ¢; = 0, we have s(\,a) = % and ¢(\, a) = cos v/Aa, and Theorem 2.2

implies
Corollary 2.3. If in addition to the conditions of Theorem 2.2, q; = 0 for all j then
the characteristic function of problem (2.1)—(2.5) is

do(A) = VAsin ™t (VAa) P(cos(VAa)).

Definition 2.4. Let v; be an interior vertex. Then we call conditions (2.3), (2.4) the
generalized Neumann condition.

If e; is the edge incoming into v; and ey, are the edges outgoing from v;. Then
we call

y;(a) = yr(0) = 0 for all k.
the generalized Dirichlet condition at v;.

Now we consider the subtree 7" obtained from the tree T' by deleting the vertex vy
together with its incident edge. Denote by R := diag{d(v2),d(vs),...,d(vp)} where

~

d(v;) is the degree of v; as a vertex in T' (see Figure 1).
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Fig. 1. A tree T and its complementary subtrees. x - vertices with Dirichlet conditions,
- - vertices with Neumann conditions

Theorem 6.4.2 of [17] applied to an equilateral tree T' with symmetric with respect
to the midpoint potentials is the following.

Theorem 2.5. The eigenvalues of problem (2.1)—(2.4), (2.6) counted with multiplicities
are the zeros of the entire function

1/1('2) = Pl(c()" a))v

where

Pi(z) := det(zR — A),
and A is the adjacency matrix of T.

Corollary 2.6. If in addition to the conditions of Theorem 2.5, q; 0 for all j then
the characteristic function of problem (2.1)—~(2.4), (2.6) is

Po(z) = Pl(cos(\ﬂa)).

3. MAIN RESULTS

Let vy be the vertex adjacent to the root vy in T'. We regard vy as the root of T and
together with problems (2.1)—(2.5) and (2.1)—(2.4), (2.6) for T consider the following
problems:
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(1) the Neumann problem for 7" which consists of the equations

i +qi(@)y; =Ny, 5=2,3...,9, (3.1)
for each pendant vertex:
yi(a) = 0, (3.2)

for each interior vertex v; except of the root with the incoming edge e; and
outgoing edges ey:

y;(a) = yi(0) (3.3)

and
yi(a) =Y i (0), (34)
k

where the sum taken over all edges ej outgoing from v;, for the root:

y;(0) = yi(0), (3.5)
for all the outgoing from v, edges e; and e and

> yi(0) =0, (3.6)

k

(2) the Dirichlet problem which consists of equations (3.1)—(3.4) and of
y;(0) =0 (3.7)

for all e; incident with vg in T.

We use the following notation: ¢ is the characteristic function of the Neumann
problem for T' (problem (2.1)—(2.5)), v is the characteristic function of the Dirichlet
problem for T (problem (2.1)-(2.4)), (2.6), ¢ is the characteristic function of the
Neumann problem (3.1)~(3.6) for 7' and ) is the characteristic function of the Dirichlet
problem (3.1)-(3.4), (3.7). We denote be T(") the subtrees of T" rooted at vs.

Using Theorem 2.1 in [14] we obtain

Y(A) = 51X, a)b(N) + s1(A, a)$(A) (3-8)

and R ~
$(A) = i (A a)p(N) + e1 (A, a) (). (3.9)
It is clear (see Corollary 2.2 in [14]) that

d(Uz)*l

o= I $90,
r=1

where (") (r =1,2,...,d(vy) — 1) is the characteristic function of Dirichlet problem
on the subtree T, rooted at vs.
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Multiplying (3.8) by ¢1(A, a) and (3.9) by s1(}, a) and then subtracting the second
obtained equation from the first one and using the Lagrange identity

c1 (N\ya)sy (N a) =14s1 (N a)c) (N a)
we arrive at
ca(\ a)p(N) = s1(X, a)d(A) + D(N). (3.10)

In case of ¢; “= 0 for all j we have s1(\,a) = %, c1(\,a) = cos vV Aa and by
Corollary 2.6
Yo(A) = Pi(cos(VAa))

and by Corollary 2.3
do(N) = VAsin ™! (VAa) P(cos(VAa)).
Then it follows from (3.10) that
P(cos(VAa)) = cos(VAa) Pi(cos(VAa)) — do(N), (3.11)
where

~ d(v2)—1~
doN) = [ @570
r=1

and gzgér) is the characteristic function of the Dirichlet problem on the subtree 7

rooted at vy with g; “£0 for all j.
Now we present the main result of this paper.

Theorem 3.1. Let the spectrum of problem (2.1))- (2.4), (2.6) coincide with the set
of zeros of Py(cos \F/\a), the spectrum of the Dirichlet problem on the subtree T")

coincide with the set of zeros of zz(gr) forallr € {1,2,...,d(ve) — 1}, the spectrum of
the problem

-y — a1 (x)yr = Ay,

1(0) =y1(a) =0

on the root edge coincide with the set of zeros of COS(\&CL).
Then q;(x) =0 for all j.

Proof. Under the conditions of this theorem equation (3.10) attains the form
s(\, a)p(X) = cos VAaPy (cos(VAa)) — do(N). (3.12)
Using identity (3.11) we obtain from (3.12):

s(\, a)(N) = P(cos(VAa)). (3.13)
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It is known (see e.g. [15, Lemma 3.4.2] or [16, Corollary 12.5.1]) that the zeros of
s1(A, a) are simple and behave asymptotically as follows:

kA 1
o _mk A (L
e TR to\R)
where A; is a constant.

Using results of [8] it was proved in [9] (Theorem 5.3) that even when g;s are
different and not symmetric with respect to the midpoints of the edges there is
a subsequence of the sequence of zeros of 1) which behave asymptotically as

k — ].) A2 1

[\@ _ 7 L 14
k a + i + o0 R (3 )
where A, is a constant.

By Lemma 1.7 (iv) in [10], z = 1 is a simple zero of P(z). Since the graph is
bipartite, the zeros of P(z) are located symmetrically with respect to the origin (see
e.g. Lemma C.5.4 in [17]), what means that z = —1 is also a zero of P(z). Therefore,

P(cos(VAa)) = (1 — (cos(v/Aa))? P(cos(VAa))

sin a) (3.15)
_ Asmm@%“mcosma)),

where P(z) is a polynomial. It is known that all the zeros of P(z) lie in the interval
[—1,1] (see [10]) and, therefore, all the zeros of P(cos(v/Aa)) are nonnegative. Com-
paring (3.13) with (3.15) and taking into account that all the zeroes of sin(v/Aa) are
simple we conclude that there exists a subsequence in the sequence of zeros of ¥(\) of

the form
)\(2) T (k — 1)
k -

a
Thus, this subsequence satisfies the conditions of Theorem 2.1 and we arrive at
qj(z) “= 0 for all j. O
4. EXAMPLES

4.1. CASE OF g =2

In [18] the three spectral problems were considered on an interval [0, a] and on its

parts [0, "T_l ] and ["T_la, a} where n € {2,3, ...} which in our terms look as follows:
—y" +a(z)y =Xy, (4.1)
y'(0) = y(a) =0, (4.2)

—y" 4+ q(@)y = My,
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v =y ("2a) =0, (43)
—y" +q(z)y = My,
y <”;1a> =y/(a) = 0. (4.4)

Denote by {&5}72 , the spectrum of problem (4.1), (4.2) and by {1 }5 4, ({,ug)}zozl)
the spectrum of problem (4.1), (4.3) (problem (4.1), (4.4), respectively). It is well

known that the three spectra consist of real simple eigenvalues only. We enumerate

the eigenvalues in the following way: &xr1 > &k, trt1 > Mk, u,(clll > ,u,(;), keN.

Theorem 4.1. Let

w2 1\? m2n? 1\? 1) m2n? 1\?
= — — = = —_ — — = N N
gk a2 (k 2) 3 123 a2(n — 1)2 <l€ 2) ) 29 a2 <k 2) ’ (k € )a

and let q(z) € Ly(0,a) be real-valued. Then q(x) = 0.

For the case of n = 2 this result follows from Theorem 3.1.

4.2. STAR GRAPH

We consider the spectral problem on an equilateral star graph of g edges rooted at one
of its pendant vertices v1. The generalized Neumann conditions at the central vertex,
the Dirichlet condition at the root and the Neumann conditions at the other pendant
vertices are imposed:

—y; +a;(2)y; = Ayj, (4.5)
y1(0) =0, (4.6)
yi(a) =0, j=2,3,....9, (4.7)
y1(a) = y2(0) = y3(0) = ... = y4(0), (4.8)
y1(a) = y2(0) — 95(0) — ... — ,(0) = 0. (4.9)
We also consider the Neumann—Dirichlet problem for the root edge
—yi + a1(@)yr = Ay, (4.10)
¥1(0) = y1(a) =0, (4.11)

and the Dirichlet—Neumann problems for the other edges of the graph

7y;/+Qj(x)yj = ija ] = 2733"'797 (412)

Up to our knowledge, the inverse problem of recovering the potentials ¢; using the
spectra of problems (4.5)—(4.9), (4.10)-(4.11) and (4.12)—(4.13) is not investigated.



436 Vyacheslav Pivovarchik

Theorem 4.2. Let the following conditions be satisfied:
(1) the spectrum {Tx}3° of problem (4.5)—(4.9) consist of the subsequences {T,Ej)}i’fo of

the form
, k—1
T}gn:M, j=1,2,....,9—2, k€N, (4.14)
a

_ k—1 1 1
\/W = mk—1) + —arcsin —, keN; (4.15)
a a V9

(2) the spectrum of problem (4.10)—(4.11) and the spectrum {A;}5° of each of the
problems (4.12)—~(4.13) is such that

Then q; 0 for all j.

1 .
Proof. Equations (4.14), (4.15) imply that q,UI{T,gJ)},;";l is the set of zeros of the
§=

function

(N = cos?2(VAa)(1 — gsin®(VAa)) = Py(cos(Va)).
which is the characteristic function of problem (4.5)—(4.9) in the case of ¢; = 0 for
all js and Pj(z) = 2972(g2%> — g + 1). The functions ¢ (\) = cos(vAa) = ég” N
(r=2,3,...,9). Thus, the conditions of Theorem 3.1 are fulfilled and the statement
of Theorem 4.2 follows. O
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