PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Raman Spectroscopy for Evaluation of Chemical Changes in Dibutyrylchitin Fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie spektroskopii Ramana do oceny zmian chemicznych zachodzących we włóknach dibutyrylochitynowych
Języki publikacji
EN
Abstrakty
EN
Microporous dibutyrylchitin (DBC) fibres formed by means of a dry-wet method were treated with aqueous solutions of potassium hydroxide. By applying various parameters of the alkaline treatment, fibres can be transformed into fibres from regenerated chitin or even into chitosan fibres. In the first stage, with the application of 5% KOH solutions and temperatures ranging from 20 to 90 °C, fibres from regenerated chitin were obtained. The subsequent treatment stage with saturated KOH solutions and the temperature range 70 - 140 °C resulted in obtaining fibres from chitosan with different deacetylation degrees.Structural changes in the fibres occurring in the course of their chemical treatment were analysed using RAMAN spectroscopy. Raman spectra were next mathematically processed by means of GRAMS software within the range 1800 - 820 cm-1 in order to evaluate the changes quantitatively. A new method is described for the determination of butyrylation and deacetylation degrees of dibutyrylchitin, chitin and chitosan. Analysis of the fibres obtained carried out by means of RAMAN spectroscopy proves that in the process gradual degradation of the polymer chains takes place.
PL
Mikroporowate włókna dibutyrylochitynowe otrzymane w wyniku przędzenia metodą sucho mokrą poddano alkalicznym obróbkom przy zastosowaniu roztworów wodorotlenku potasu. W pierwszym etapie uzyskano z włókien dibutyrylochitynowych włókna z chityny regenerowanej przy zastosowaniu 5% roztworów KOH w temperaturach z zakresu 20 – 90 °C. W kolejnym etapie, w wyniku zastosowania nasyconych roztworów KOH w wysokich temperaturach z zakresu 70 – 140 °C, uzyskano włókna chitozanowe o różnicowanych stopniach deacetylacji. Zachodzące w czasie poszczególnych etapów obróbek obserwowano zmiany strukturalne przy zastosowaniu spektroskopii Ramana. W celu przeprowadzenia analizy ilościowej procesów obróbki alkalicznej wykonano rozkłady widm FT Raman przy zastosowaniu oprogramowania „GRAMS” w zakresie 1800-820 cm-1. Na podstawie wykonanych rozkładów widm FT Raman dla badanych serii podjęto próbę obliczenia stopnia butyrylacji oraz stopnia deacetylacji włókien. Na podstawie badań ramanowskich stwierdzono częściową degradację łańcucha polimeru.
Rocznik
Strony
27--38
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Bielsko-Biała, Poland
autor
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Bielsko-Biała, Poland
autor
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Bielsko-Biała, Poland
Bibliografia
  • 1. Muzzarelli RAA and Muzzarelli C. Chitosan chemistry: relevance to the biomedical sciences. Advances in Polymer Science 2005; 186: 151–209.
  • 2. Muzzarelli RAA, Guerrieri M, Goteri G, Muzzarelli C, Armeni T, Ghiselli R and Cornellisen M. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 2005, 26: 5844-5854.
  • 3. Rinaudo M. Chitin and chitosan: properties and applications. Progress in Polymer Science 2006; 31: 603–632.
  • 4. Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymers 2000; 46(1): 1–27.
  • 5. Villetti MA, Crespo JS, Soldi MS, Pires ATN, Borsali R and Soldi V. Thermal Degradation of Natural Polymers. Journal of Thermal Analysis and Calorimetry 2002; 67(2): 295-303.
  • 6. Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science 2001; 26: 1921–1971.
  • 7. Pillai CKS, Paul W and Sharma ChP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science 2009; 34: 641–678.
  • 8. Hemant KSY, Shivakumar HG. Development of chitosan acetate films for transdermal delivery of propranolol hydrochloride. Tropical Journal of Pharmaceutical Research 2010; 9(2): 197–203.
  • 9. Shu XZ and Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. European Journal of Pharmaceutics and Biopharmaceutics 2002; 54: 235–243.
  • 10. Silva CL, Pereira JC, Ramalho A, Pais ACC, Sousa JS. Films based on chitosan polyelectrolyte complex for skin drug delivery: development and characterization. Journal of Membrane Science 2008; 320: 268–279.
  • 11. Kofuji K, Ito T, Murata Y and Kawashima S. The controlled release of a drug from biodegradable chitosan gel beads. Chemical & Pharmaceutical Bulletin 2000; 48(4): 579–581.
  • 12. Martinez-Ruvalcaba A, Schanchez-Diaz JC, Becerra F and Cruz-Barba LE. Swelling characterization and drug delivery kinetics of polyacrylamide-coitaconic acid/chitosan hydrogels. eXPESS Polymer Letters 2009; 3(1): 25–32.
  • 13. Hirano S. Water-soluble glycol chitin and carboxymethylchitin. Methods in Enzymology 1988; 161: 408–410.
  • 14. Lim SH and Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science-Polymer Reviews. 2003; C43: 223-269.
  • 15. Sini TK, Santhosh S and Mathew PT. Study of the influence of processing parameters on the production of carboxymethylchitin. Polymer 2005; 46(9): 3128–3131.
  • 16. Szosland L, Janowska G. The method of preparation of dibutyrylchitin. Polish Patent PL 169077B1; 1996.
  • 17. Szosland, L. Di-O-butyrylchitin. In Muzzarelli RAA, Peter M G (Eds.), Chitin Handbook 1997; (53–60), Italy: Atec.
  • 18. Szosland L. Synthesis of highly substituted butyrylchitin in the presence of perchloric acid. Journal of Bioactive and Compatible Polymers 1996; 11: 61–71.
  • 19. Biniaś D, Boryniec S and Biniaś W. Dibutyrylchitin Fibres Formed from Ethylen Alcohol Solutions. Progress on Chemistry and Application of Chitin and its Derivatives. 2003 (Monograph.Vol.IX) Henryk Struszczyk (Eds.) Lodz, Polish Chitin Society; 161-168.
  • 20. Biniaś D, Boryniec S and Biniaś W. Studies on the structure of polysaccharides in the process of alkaline treatment of dibutyrylchitin fibres. Fibres and Textiles in Eastern Europe 2005; 13(5): 137-140.
  • 21. Wlochowicz A, Szosland L, Binias D and Szumilewicz J. Crystalline structure and mechanical properties of wet-spun dibutyrylchitin fibers and products of their alkaline treatment. Journal of Applied Polymer Science 2004; 94(5): 1861-1868.
  • 22. Szosland L, Krucińska I, Cisło R, Paluch D, Staniszewska-Kuś J, Solski L and Szymonowicz M. Synthesis of dibutyrylchitin and preparation of new textiles made from dibutyrylchitin and chitin for medical applications. Fibres and Textiles in Eastern Europe 2001; 9, 3(34): 54-57.
  • 23. Paluch D, Szosland L, Kołodziej J, Staniszewska-Kuś J, Szymonowicz M, Solski L and Zywiecka B. Biological investigation of the regenerated chitin fibers. Engineering of Biomaterials 1999; II: 52-60.
  • 24. Paluch D, Pielka S, Szosland L, Kołodziej J, Staniszewska-Kuś J, Szymonowicz M, and Solski L. A biological investigation of dibutyrylchitin fibres. Engineering of Biomaterials 2000; III: 17-22.
  • 25. Pielka S, Paluch D, Staniszewska-Kuś J, Zywicka B, Solski L, Szosland L, Czarny A and Zaczyńska E,. Wound healing accelerating by a textile dressing containing dibutyrylchitin and chitin. Fibres and Textiles in Eastern Europe 2003; 11, 2(41): 79-84.
  • 26. Muzzarelli C, Francescangeli O, Tosi G and Muzzarelli RAA. Susceptibility of dibutyryl chitin and regenerated chitin fibres to deacetylation and depolymerization by lipases. Carbohydrate Polymers 2004; 56: 37–146.
  • 27. Chilarski A, Szosland L, Krucińska I, Kiekens P, Błasińska A, Schoukens G, Cisło R, Szumilewicz J. Novel dressing materials accelerating wound healing made from dibutyrylchitin. Fibres and Textiles in Eastern Europe 2007; 4(63): 77–81.
  • 28. Schoukens G, Kiekens P and Krucinska I. New bioactive textile dressing materials from dibutyrylchitin. International Journal of Clothing Science and Technology 2009; 21(2/3): 93 – 101.
  • 29. Krucinska I, Komisarczyk A, Paluch D, Szymonowicz M, Zywicka B and Pielka S. The impact of the dibutyrylchitin molar mass on the bioactive properties of dressings used to treat soft tissue wounds. J Biomed Mater Res Part B 2012; 100B:11-22.
  • 30. Błasińska A and Drobnik J. Effects of non-woven mats of di-O-butyrylchitin and related polymers on the process of wound healing. Biomacromolecules 2008, 3, vol. 9, 776-782.
  • 31. Błasińska A and Kun T. Influence of dibutyrylchitin on histamine release from mast cells. Progress on Chemistry and Application of Chitin and Its Derivatives ed. by M.M.Jaworska, Łódź-Poland, 2008, 95-106.
  • 32. Domszy JG and Roberts GAF. Evaluation of infrared spectroscopic techniques for analysing chitosan. Die Makromolekulare Chemie 1985; 186: 1671–1677.
  • 33. Focher B, Naggi A, Torri G, Cosani A and Terbojevich M. Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydrate Polymers 1992; 17(2): 97-102.
  • 34. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrieres J and Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001; 42 3569–3580.
  • 35. Yamaguchi Y, Nge TT, Takemura A, Hori N and Ono H. Characterization of uniaxially aligned chitin film by FT-IR spectroscopy. Biomacromolecules 2005; 6:1941–1947.
  • 36. Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J and Stepnowski P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs 2010; 8 (5): 1567–1636.
  • 37. Prabu K, Natarajan E.Isolation and FTIR spectroscopy characterization of chitin from local sources. Advances in Applied Science Research 2012; 3(2): 1870-1875.
  • 38. Van De Velde K, Kiekens P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state13C NMR. Carbohydrate Polymers 2004; 58: 409–416.
  • 39. Biniaś D, Boryniec S, Biniaś W and Włochowicz A. Changes in structure of dibutyrylchitin fibres in process of chitin regeneration. Polimery 2005; 50(10): 742-747.
  • 40. Biniaś D, Boryniec S, Biniaś W and Włochowicz A. Alkaline treatment of dibutyrylchitin fibers spun from polymer solution in ethyl alcohol. Fibres & Textiles in Eastern Europe 2006; 14(3): 12-18.
  • 41. Biniaś D, Wyszomirski M., Biniaś W and Boryniec S. Supermolecular structure of chitin and its derivatives in FTIR spectroscopy studies. Progress on Chemistry and Application of Chitin and Its Derivatives ed. by M.M. Jaworska, Łódź-Poland, 2007, 95-108.
  • 42. Biniaś W, Biniaś D. Application of FTNIR Spectroscopy for evaluation of the degree of deacetylation of chitosan fibres. Fibres & Textiles in Eastern Europe 2015; 23, 2(110): 10-18.
  • 43. Gałat A, Popowicz J. Study of the Raman scattering spectra of chitins, Bulletin Academy Polonian Sciences, Series Science Biology 1978; 26(8): 519–524.
  • 44. De Gussem K, Vandenabeele P, Verbeken A, Moens L. Raman spectroscopic study of Lactarius spores (Russulales, Fungi), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005; 61: 2896–2908.
  • 45. Ehrlich H, Maldonado M, Spindler K-D, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S and Worch H. First Evidence of Chitinasa Component of the Skeletal Fibers of Marine Sponges. Part I. Verongidae (Demospongia: Porifera) Journal of experimental zoology 2007; 308B: 347–356.
  • 46. Ehrlich H, Kaluzhnaya O V, Brunner E, Tsurkan MV, Ereskovsky A, Ilan M, Tabachnick KR, Bazhenov VV, Paasch S, et al. Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris, Journal of Structural Biology 2013; 183 (3): 474-483.
  • 47. Ehrlich H, Kaluzhnaya OV, Tsurkan MV, Ereskovsky A, Tabachnick KR, Ilan M, Stelling A, Galli R, Petrova OV, Nekipelov SV, Sivkov VN, Vyalikh D, Born R, Behm T, Ehrlich A, Chernogor L I, Belikov S, Janussen D, Bazhenov VV and Wörheide G. First report on chitinous holdfast in sponges (Porifera). Proceedings of the Royal Society B 2013; 280.
  • 48. Wysokowski M, Bazhenov VV, Tsurkan MV, Galli R, Stelling AL, Stöcker H and Kaiser S. Isolation and Identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. International Journal of Biological Macromolecules 2013; 62: 94-100.
  • 49. Brzeski M, Mieczkowska M, Sowa K, Stolz H, Wojtasz-Pająk A and Neugebauer W. Technologia otrzymywania chityny z pancerzy kryla antarktycznego, Studia i Materiały Seria S 1985; WMIR, Gdynia; (2): 13-23.
  • 50. Socrates G. Infrared and Raman characteristic group frequencis, (3th Ed.) 2001; England: John Wiley&Sons Ltd.
  • 51. Siesler HW, Ozaki Y, Kawata S and Heise HM. Near-Infrared Spectroscopy 2002 (Principles, Instruments, Applications); WILEY-VCH Weinheim (Germany).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa3f5c46-5f53-4e38-8f4c-3a6db09bdb0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.