PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Temperature Field, Heat and Fluid Flow of Two-Phase Zone Continuous Casting Cu–Sn Alloy Wire

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting speed and cooling water temperature is 1200°C, 1040°C, 20 mm/min and 18°C, respectively, the alloy temperature in the mold is in the range of 720°C–1081°C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along the wall of the mold and flows upward in the center.
Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 17 poz., il., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering
autor
  • School of Materials Science and Engineering
  • State Key Laboratory for Advanced Metals and Materials
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Materials Science and Engineering
Bibliografia
  • [1] Liu, X., Luo, J., Wang, X., Wang, L. & Xie, J. (2013). Columnar grains-covered small grains Cu-Sn alloy prepared by two-phase zone continuous casting. Progress in Natural Science: Materials International, 23(1): 94–101.
  • [2] Qu, S., Zhang, Y., Pang, X. & Gao, K. (2012). Influence of temperature field on the microstructure of low carbon microalloyed ferrite–bainite dual-phase steel during heat treatment. Materials Science and Engineering A, 536. 136– 142.
  • [3] Guan, R.G., Zhao, Z.Y., Zhang, Q.S., Lee, C.S. & Liu, C.M. (2013). Effect of the casting temperature on temperature field and microstructure of A2017 alloy during an innovative continuous semisolid rolling process with a vibrating sloping plate device. The International Journal of Advanced Manufacturing Technology, 67. 917–923.
  • [4] Zuo, Y., Nagaumi, H. & Cui. J. (2008). Study on the sump and temperature field during low frequency electromagnetic casting a superhigh strength Al–Zn–Mg–Cu alloy. Journal of Materials Processing Technology, 197: 109–115.
  • [5] Zhao, X., Liu, L., Yu, Z., Zhang, W. & Fu. H. (2010). Microstructure development of different orientated nickel-base single crystal superalloy in directional solidification. Materials Characterization, 61:7–12.
  • [6] Kato, H. & Umeda. T. (1978). Growth structures of Al–4.5 wt pct Cu alloys with dendrite growth directions differing from the heat flow direction. Journal Metallurgical Transactions A, 9: 1795–1800.
  • [7] Turchin, A.N., Eskin, D.G & Katgerman, L. (2005). Effect of melt flow on macro- and microstructure evolution during solidification of an Al–4.5% Cu alloy. Materials Science and Engineering A, 413–414: 98–104.
  • [8] Zimmermann, G. Weiss, A. & Mbaya, Z. (2005). Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification. Materials Science and Engineering A, 413–414: 236–242.
  • [9] Henry, S., Gruen, G.U. & Rappaz. M. (2004). Influence of convection on feathery grain formation in aluminum alloys Metallurgical and Materials Transaction A, 35: 2495–2501.
  • [10] Janik, M. & Dyja, H. (2004). Modelling of three-dimensional temperature field inside the mould during continuous casting
  • of steel. Journal of Materials Processing Technology, 157-158: 177–182.
  • [11] Eck, S., Kharicha, M.S., Ishmurzin, A. & Ludwig. A. (2005). Measurement and simulation of temperature and velocity fields during the cooling of water in a die casting model. Materials Science and Engineering A, 413–414: 79–84.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa3e9e09-7d0d-4b73-8c90-66ea34c71b91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.