Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The toxic heavy metals, as non-biodegradable pollutants, have become a serious threat to aquatic environment. This study aimed to assess the efficiency of the low cost, available and environment-friendly peanut shell as an effective adsorbent for the removal of Zn, Pb and Cd from wastewater. The peanut shell was prepared by carbonization by pyrolysis process at 550 °C, activated with 7M potassium hydroxide(KOH) at 750 °C, and then characterized by using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area analysis. The optimum conditions for metal ions adsorption were investigated as a function of various parameters. The optimum conditions included: pH of 6, initial metal concentrations of 20 mg/l for Pb and Zn as well as 40 mg/l for Cd, adsorbent mass of 2 g, optimum temperature of 45 °C and the preferable contact time of 60 min. The removal percent for the studied metal ions exceeded 98%. The adsorption isotherm showed that the Langmuir model was the best fitted model for the metal ions adsorption onto activated peanut shell surface, and the kinetic of adsorption followed the pseudo-first order model. The obtained results showed that the KOH-activated peanut shell possess higher adsorption efficiency for the removal of the studied metal ions from wastewater.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
66--78
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Applied Chemistry Branch, Department of Applied Sciences, University of Technology, Baghdad, Iraq
autor
- Applied Chemistry Branch, Department of Applied Sciences, University of Technology, Baghdad, Iraq
Bibliografia
- 1. Abdelfattah, I., Ismail, A.A., Sayed, F.A., Almedolab, A., Aboelghait, K.M. 2016. Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environmental Nanotechnology, Monitoring and Management, 6, 176–183. https://doi.org/10.1016/j.enmm.2016.10.007
- 2. Abo-El-Enein, S.A., Shebl, A., Abo El-Dahab, S.A. 2017. Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Applied Clay Science, 146(May), 343–349. https://doi.org/10.1016/j.clay.2017.06.027
- 3. Adiana, M.A., Mazura, M.P. 2011. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy. Journal of Molecular Structure, 991(1–3), 84–91. https://doi.org/10.1016/j.molstruc.2011.02.005
- 4. Ahmaruzzaman, M. 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36–59. https://doi.org/10.1016/j.cis.2011.04.005
- 5. Jadir, T.M., Siperstein, F.R. 2018. The influence of the pore size in Metal−Organic Frameworks in adsorption and separation of hydrogen sulphide: A molecular simulation study. Microporous and Mesoporous Materials, 271, 160–168. https://doi.org/10.1016/j.micromeso.2018.06.002
- 6. AL-Othman, Z.A., Ali, R., Naushad, M. 2012. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184, 238–247. https://doi.org/10.1016/j.cej.2012.01.048
- 7. Aryee, A.A., Mpatani, F.M., Du, Y., Kani, A.N., Dovi, E., Han, R., Li, Z., Qu, L. 2021. Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (II) and Pb (II) in aqueous solution: Characterization, equilibrium and kinetic study. Environmental Pollution, 268, 115729. https://doi.org/10.1016/j.envpol.2020.115729
- 8. Ashrafi, S.D., Kamani, H., Soheil Arezomand, H., Yousefi, N., Mahvi, A.H. 2016. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desalination and Water Treatment, 57(30), 14051–14059. https://doi.org/10.1080/19443994.2015.1060903
- 9. Barquilha, C.E.R., Cossich, E.S., Tavares, C.R.G., Silva, E.A. 2017. Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64. https://doi.org/10.1016/j.jclepro.2017.02.199
- 10. Crini, G., Lichtfouse, E. 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
- 11. Dong, Q., Guo, X., Huang, X., Liu, L., Tallon, R., Taylor, B., Chen, J. 2019. Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane. Chemical Engineering Journal, 361, 1535–1542. https://doi.org/10.1016/j.cej.2018.10.208
- 12. Dotto, G.L., Buriol, C., Pinto, L.A.A. 2014. Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 92(11), 2324–2332. https://doi.org/10.1016/j.cherd.2014.03.013
- 13. Esmaeili, A., Aghababai Beni, A. 2015. Biosorption of nickel and cobalt from plant effluent by Sargassum glaucescens nanoparticles at new membrane reactor. International Journal of Environmental Science and Technology, 12(6), 2055–2064. https://doi.org/10.1007/s13762-014-0744-3
- 14. Gan, Q. 2000. A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water. Waste Management, 20(8), 695–701. https://doi.org/10.1016/S0956-053X(00)00036-2
- 15. Garg, D., Kumar, S., Sharma, K., Majumder, C. B. 2019. Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater. In Groundwater for Sustainable Development, Elsevier B.V., 8. https://doi.org/10.1016/j.gsd.2019.01.010
- 16. Georgin, J., Dotto, G.L., Mazutti, M.A., Foletto, E.L. 2016. Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 4(1), 266–275. https://doi.org/10.1016/j.jece.2015.11.018
- 17. Khatoon H., Rai J.P.N. 2016. Agricultural Waste Materials As Biosorbents for the Removal. Octa Journal of Environmental Research, 4(3), 208–229. http://www.sciencebeingjournal.com
- 18. Huang, H., Tang, J., Gao, K., He, R., Zhao, H., Werner, D. 2017. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Advances, 7(24), 14640–14648. https://doi.org/10.1039/c6ra27881g
- 19. Huang, L., Chen, B., Pistolozzi, M., Wu, Z., Wang, J. 2014. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge. Bioresource Technology, 153, 87–94. https://doi.org/10.1016/j.biortech.2013.11.049
- 20. Huo, S., Ulven, C. A., Wang, H., Wang, X. 2013. Chemical and mechanical properties studies of chinese linen flax and its composites. Polymers and Polymer Composites, 21(5), 275–286. https://doi.org/10.1177/096739111302100502
- 21. Iqbal, M., Saeed, A., Zafar, S.I. 2009. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164(1), 161–171. https://doi.org/10.1016/j.jhazmat.2008.07.141
- 22. Isawi, H. 2020. Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6), 5691–5716. https://doi.org/10.1016/j.arabjc.2020.04.009
- 23. Jauberty, L., Villandier, N., Chaleix, V., Gloaguen, V. 2017. Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecological Engineering, 100, 186–193. https://doi.org/10.1016/j.ecoleng.2016.12.012
- 24. Karim, M.R., Aijaz, M.O., Alharth, N.H., Alharbi, H.F., Al-Mubaddel, F.S., Awual, M.R. 2019. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicology and Environmental Safety, 169 July 2018, 479–486. https://doi.org/10.1016/j.ecoenv.2018.11.049
- 25. Li, J., Zhang, S., Chen, C., Zhao, G., Yang, X., Li, J., Wang, X. 2012. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Applied Materials and Interfaces, 4(9), 4991–5000. https://doi.org/10.1021/am301358b
- 26. Liu, C., Wang, W., Wu, R., Liu, Y., Lin, X., Kan, H., Zheng, Y. 2020. Preparation of Acid- And Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS Omega, 5(48), 30906–30922. https://doi.org/10.1021/acsomega.0c03688
- 27. Mohammed, A.A., Kareem, S.L. 2019. Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alexandria Engineering Journal, 58(3), 917–928. https://doi.org/10.1016/j.aej.2019.08.006
- 28. Nageeb Rashed, M., El-Daim El Taher, M.A., Fadlalla, S.M.M. 2016. Adsorption of methylene blue using modified adsorbents from drinking water treatment sludge. Water Science and Technology, 74(8), 1885–1898. https://doi.org/10.2166/wst.2016.377
- 29. Nam, H., Wang, S., Jeong, H.R. 2018. TMA and H2S gas removals using metal loaded on rice husk activated carbon for indoor air purification. Fuel, 213, 186–194. https://doi.org/10.1016/j.fuel.2017.10.089
- 30. Nazir, A., Um-E-laila, Firdaus-E-bareen, Hameed, E., Shafiq, M. 2021. Sustainable management of peanut shell through biochar and its application as soil ameliorant. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413796
- 31. Peng, L., Shang, Y., Gao, B., Xu, X. 2021. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride. Applied Catalysis B: Environmental, 282(August), 119484. https://doi.org/10.1016/j.apcatb.2020.119484
- 32. Qasim, B., Razzak, A.A., Rasheed, R. T. 2021. Effect of biochar amendment on mobility and plant uptake of Zn, Pb and Cd in contaminated soil. IOP Conference Series: Earth and Environmental Science, 779(1). https://doi.org/10.1088/1755-1315/779/1/012082
- 33. Shakor, Z.M., Mahdi, H.H., Al-Sheikh, F., Alwan, G.M., Al-Jadir, T. 2021. Ni, Cu, and Zn metal ions removal from synthetic wastewater using a watermelon rind (Catullus landaus). Materials Today: Proceedings, 42, 2502–2509. https://doi.org/10.1016/j.matpr.2020.12.570
- 34. Thompson, K.A., Shimabuku, K.K., Kearns, J.P., Knappe, D.R.U., Summers, R.S., Cook, S.M. 2016. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environmental Science and Technology, 50(20), 11253–11262. https://doi.org/10.1021/acs.est.6b03239
- 35. Tounsadi, H., Khalidi, A., Abdennouri, M., Barka, N. 2015. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering, 3(2), 822–830. https://doi.org/10.1016/j.jece.2015.03.022
- 36. Vijayaraghavan, K., Rangabhashiyam, S., Ashokkumar, T., Arockiaraj, J. 2017. Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. Journal of the Taiwan Institute of Chemical Engineers, 74, 113–120. https://doi.org/10.1016/j.jtice.2017.02.003
- 37. Wang, S., Nam, H., Nam, H. 2019. Utilization of cocoa activated carbon for trimethylamine and hydrogen sulfide gas removals in a confined space and its techno-economic analysis and life-cycle analysis. Environmental Progress and Sustainable Energy, 38(6), 0–17. https://doi.org/10.1002/ep.13241
- 38. Wang, S., Nam, H., Nam, H. 2020. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. Journal of Environmental Chemical Engineering, 8(2), 103683. https://doi.org/10.1016/j.jece.2020.103683
- 39. Weng, C.H., Huang, C.P. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1–3), 137–143. https://doi.org/10.1016/j.colsurfa.2004.08.050
- 40. Witek-Krowiak, A. 2013. Application of beech sawdust for removal of heavy metals from water: Biosorption and desorption studies. European Journal of Wood and Wood Products, 71(2), 227–236. https://doi.org/10.1007/s00107-013-0673-8
- 41. Witek-Krowiak, A., Szafran, R.G., Modelski, S. 2011. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265(1–3), 126–134. https://doi.org/10.1016/j.desal.2010.07.042
- 42. Tingting, Y., Xu, Y., Huang, Q., Sun, Y., Liang, X., Wang, L., Qin, X., Zhao, L. 2021. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water. Bioresource Technology, 333(March), 125078. https://doi.org/10.1016/j.biortech.2021.125078
- 43. Zanin, E., Scapinello, J., de Oliveira, M., Rambo, C.L., Franscescon, F., Freitas, L., de Mello, J.M. M., Fiori, M.A., Oliveira, J.V., Dal Magro, J. 2017. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Safety and Environmental Protection, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa35df62-bcfe-48bd-abaa-6e570a487189
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.