PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Spatio-temporal analysis of main seismic hazard parameters in the Ibero-Maghreb region using an Mw homogenized catalog

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a step toward probabilistic seismic hazard assessment in the Ibero–Maghreb region, this study focuses on the estimation and the analysis of main seismic hazard parameters, namely the magnitude of completeness mc, the occurrence rate λ, the Gutenberg–Richter b value, and the maximum expected magnitude Mmax. The most recent earthquake catalog database has been compiled using different earthquake sources, including historical and instrumental earthquake records covering the time period 1045−2019. International Seismological Centre catalog database has been used to get the preliminary instrumental catalog covering the study region. Then, a magnitude inter-scale conversion analysis has been carried out to obtain magnitude conversion empirical laws. These later have been used to compile a homogenized catalog with all magnitudes unified to the moment magnitude Mw scale, which is quite reliably linked to fault physical parameters. The completeness magnitude has been estimated for different time periods using the maximum curvature and the entire magnitude range methods. Subsequently, the spatio-temporal variation of the completeness magnitude has been studied to better appreciate regional data quality. This analysis resulted in three complete sub-catalogs corresponding to different magnitude of completeness, namely mc=3.5, 4.5, and 5.5, starting from 1997, 1967 and 1959. The remaining seismic hazard parameters (λ, b and Mmax) were analyzed taking into account former magnitudes of completeness. Indeed, the use of incomplete data may add significant bias to seismic hazard parameters estimates. Main results are presented as spatial maps showing variation of seismic hazard parameters for different mc values. In particular, for the first time, a combined maximum magnitude–intensity map is elaborated and analyzed. The region corresponding to the largest maximum possible magnitude Mmax has been delimited as including Chelif basin and its surrounding areas west of the capital city Algiers. Mmax hotspots with values exceeding 7 have been delimitated close to Lakhdaria and Boumerdes cities east of the capital Algiers. The corresponding hotspots include the epicenter of the 1910 Mw7 and the 2003 Mw6.8 Aumale and Zemmouri earthquakes, respectively. The magnitude of completeness mc has been found to decrease significantly during the last two decades, especially in the western part. The results obtained in this study can serve as a road map for future seismic hazard studies performed on the Ibero–Maghreb region.
Czasopismo
Rocznik
Strony
979--1001
Opis fizyczny
Bibliogr. 107 poz.
Twórcy
  • Centre de Recherche en Astronomie Astrophysique et Géophysique, CRAAG, BP 63, 16340 Bouzareah, Algeria
  • Faculté des Sciences de la Terre, de la Géographie et de l’Aménagement du Territoire (FSTGAT), Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Algiers, Algeria
  • Centre de Recherche en Astronomie Astrophysique et Géophysique, CRAAG, BP 63, 16340 Bouzareah, Algeria
Bibliografia
  • 1. Aki K (1965) Maximum likelihood estimates of b in the formula log N=a–bM and its confidence limits. Bull Earthquake Res Inst Tokyo Univ 43:237–239
  • 2. Algermissen ST, Perkins DM (1976) A probabilistic estimate of maximum acceleration in rock in the contiguous United States, USGS Open File Report 76–416, 45pp
  • 3. Amaro-Mellado et al (2021) Generating a seismogenic source zone model for the Pyrenees: a GIS-assisted triclustering approach. Comput Geosci 150:104736. https://doi.org/10.1016/j.cageo.2021.104736
  • 4. Ambraseys N, Vogt J (1988) Material for the investigation of the seismicity of the region of Algiers. Eur Earthq Eng 3:16–29
  • 5. Aoudia A, Meghraoui M (1995) Seismotectonic in the tell atlas of Algeria: the Cavaignac (Abou El Hassen) earthquake of 25.08.1922. Tectonophysics 248:263–276
  • 6. Ayadi A, Bezzeghoud M (2015) Seismicity of Algeria from 1365 to 2013: maximum observed intensity map (MOI2014). Seismol Res Lett 86(1):236–244. https://doi.org/10.1785/0220140075
  • 7. Beauval C, Hainzl S, Scherbaum F (2006a) Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence. Geophy J Int 164:543–550. https://doi.org/10.1111/j.1365-246X.2006.02863.x
  • 8. Beauval C, Scotti O, Bonilla F (2006b) The role of seismicity models in probabilistic seismic hazard estimation: comparison of a zoning and a smoothing approach. Geophys J Int 165:584–595
  • 9. Bellalem F, Talbi A, Djellit H, Ymmel H, Mobarki M (2018) Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure. J Seismol 22:897–908
  • 10. Bender BK, Perkins DM (1983) Treatment of parameter uncertainty and variability for a single seismic hazard map. Earthq Spectra 9(2):165–194
  • 11. Benouar D (1994) Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Ann Geophys XXXVI I(4):459–860
  • 12. Benouar D, Molas GL, Yamazaki F (1996) Earthquake hazard mapping in the Maghreb countries: Algeria, Morocco. Tunisia Earthq Eng Struct Dyn J 25(10):1151–1164
  • 13. Bezzeghoud M, Ayadi A, Sebai A, Ait Messaoud A, Mokrane A, Benhallou H (1996) Seismicity of Algeria between 1365 and 1989: Map of Maximum observed intensities (MOI). Avances en Geofisica y Geodesia, 1, Ministerio de Obras Publicas, Transportes y Medio Ambiante. Instituto Geografico National España 107–114
  • 14. Boudiaf A (1996) Étude sismotectonique de la région d’Alger et de la Kabylie (Algérie): utilisation des modèles numériques de terrain (mnt) et de la télédétection pour la reconnaissance des structures tectoniques actives: contribution à l’évaluation de l’aléa sismique. Université des Sciences de Montpellier (In French), Thèse de Doctorat
  • 15. Boughacha MS, Ouyed M, Ayadi A, Benhallou H (2004) Seismicity and seismic hazard mapping of northern Algeria: map of maximum calculated intensities (MCI). J Seismol 8:1–10
  • 16. Buforn E et al (2017) The 2016 south Alboran earthquake (Mw = 6.4): a reactivation of the Ibero-Maghrebian region? Tectonophysics 712–713:704–715. https://doi.org/10.1016/j.tecto.2017.06.033
  • 17. Cabanas L et al (2015) Relationships between Mw and other earthquake size parameters in the Spanish IGN seismic catalog. Pure Appl Geophys 172(9):2397–2410
  • 18. Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132(2):347–362. https://doi.org/10.1046/j.1365-246x.1998.00428.x
  • 19. Cherkaoui T (2007) Le réseau sismologique du département de physique du globe: 1937–2007. Edt. Institut scientifique, Rabat, Maroc. https://doi.org/10.13140/2.1.1308.0320
  • 20. Clague J (1997) Evidence for large earthquakes at the Cascadia Subduction Zone. Rev Geophys 35(4):439–460
  • 21. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606
  • 22. Cover TM, Hart PE (1967) Nearest neighbor Pattern classification. IEEE Trans Inf Theory 13(1):21–27
  • 23. De Santis A, Cianchini G, Favali P, Beranzoli L, Boschi E (2011) The Gutenberg-Richter law and entropy of earthquakes: two case studies in central Italy. Bull Seismol Soc Am 101(3):1386–1395
  • 24. Deniz A, Yucemen MS (2010) Magnitude conversion problem for the Turkish earthquake data. Nat Hazards 55:333–352. https://doi.org/10.1007/s11069-010-9531-8
  • 25. Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res 99:2601–2618
  • 26. Domzig A et al (2006) Searching for the Africa-Eurasia Miocene boundary onshore western Algeria (Maradja’03 cruise). C R Geosci 338:80–91
  • 27. Eroğlu Azak T, Kalafat D, Şeşetyan K, Demircioğlu MB (2018) Effects of seismic declustering on seismic hazard assessment: a sensitivity study using the Turkish earthquake catalogue. Bull Earthquake Eng (online) 16(8):3339–3366. https://doi.org/10.1007/s10518-017-0174-y
  • 28. Faenza L, Hainzl S, Scherbaum F, Beauval C (2007) Statistical analysis of time-dependent earthquake occurrence and its impact on hazard in the low seismicity region Lower Rhine Embayment. Geophys J Int 171(2):797–806. https://doi.org/10.1111/j.1365-246X.2007.03564.x
  • 29. Grünthal G, Wahlström R (2012) The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16:535–570
  • 30. Guiraud R (1977) Sur la néotectonique des régions ouest–constantinoises. Bulletin De La Société Géologique De France S7-XIX(3):645–650 (In French)
  • 31. Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574:193–200
  • 32. Gulia L, Tormann T, Wiemer S, Herrmann M, Seif S (2016) Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophys Res Lett 43:1100–1108
  • 33. Gutenberg B (1956) The energy of earthquakes. Q J Geol Sot London 112:1–14
  • 34. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188
  • 35. Gutenberg B, Richter CF (1954) Seismicity of the earth. Second Princeton Univ Pres, Princeton New Jersey, p 308
  • 36. Hamdache M (1998) Seismic hazard assessment for the main seismogenic zones in north Algeria. Pure Appl Geophy 152:281–314
  • 37. Hamdache M, Bezzeghoud M, Mokrane A (1998) Estimation of seismic hazard parameters in the northern part of Algeria. Pure Appl Geophys 151:101–117
  • 38. Hamdache M, Peláez JA, Talbi A, Casado CL (2010) A unified catalog of main earthquakes for northern Algeria from A.D. 856 to 2008. Seismol Res Lett 81(5):732–739
  • 39. Hamdache M, Peláez JA, Talbi A, Mobarki M, Casado CL (2012) Ground–motion hazard values for Northern Algeria. Pure Appl Geophys 169:711–723
  • 40. Hamdache M, Henares J, Pelaez JA, Damerdji Y (2018) Fractal analysis of earthquake sequences in the Ibero-Maghrebian region. Pure Appl Geophys 176(4):1397–1416
  • 41. Hamidatou M et al (2021) Seismic hazard analysis of surface level using topographic condition in the northeast of Algeria. Pure Appl Geophys 178(3):823–846
  • 42. Hamlaoui M, Vanneste K, Baddari K, Louail L, Vleminckx B, Demdoum A (2017) Probabilistic seismic hazard assessment in the northeastern part of Algeria. Arab J Geosci 10(11):1–14
  • 43. Harbi A, Benouar D, Benhallou H (2003a) Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part I: review of historical seismicity. J Seismol 7:115–136
  • 44. Harbi A, Maouche S, Benhallou H (2003b) Re–appraisal of seismicity and seismotectonics in the north–eastern Algeria Part II: 20th century seismicity and seismotectonics analysis. J Seismol 7:221–234
  • 45. Hée A (1950) Catalogue des séismes Algériens de 1850 à 1911. Annales De L’institut De Physique Du Globe De Strasbourg 6:41–49 ((in French))
  • 46. Horst AE, Streig AR, Wells RE, Bershaw J (2020) Multiple Holocene earthquakes on the gales creek fault, northwest Oregon fore-arc. Bull Seismol Soc Am 111(1):476–489. https://doi.org/10.1785/0120190291
  • 47. Jiménez MJ, García-Fernández M, GSHAP Ibero-Maghreb working group (1999) Seismic hazard assessment in the Ibero-Maghreb region. Ann Geofis 42(6):1057–1066
  • 48. Jiménez MJ, Giardini D, Grünthal G, sesame working group (2001) Unified seismic hazard modelling throughout the Mediterranean Region. Bollettino Di Geofisica Teorica Ed Applicata 42(1–2):3–18
  • 49. Kadirioglu FT, Kartal RF (2016) The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish J Earh Sci 25:300–310
  • 50. Kariche J, Meghraoui M, Ayadi A, Boughacha MS (2017) Stress change and fault interaction from a two century-long earthquake sequence in the central tell atlas, Algeria Stress change and fault interaction from a two century-long earthquake sequence. Bull Seismol Soc Am 107:2624–2635
  • 51. Kherroubi A et al (2009) Recent and active deformation pattern off the easternmost Algerian margin Western Mediterranean Sea: new evidence for contractional tectonic reactivation. Mar Geol 261:17–32
  • 52. Kijko A (2004) Estimation of the maximum earthquake magnitude Mmax. Pure Appl Geophys 161:1–27
  • 53. Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59:674–700
  • 54. Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158:1655–1675
  • 55. Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files Part III Incorporation of uncertainty of earthquake–occurrence model. Bull Seismol Soc Am 106(3):1210–1222
  • 56. Komut T, Karabudak E (2021) Paleo-earthquake evidence and earthquake recurrence for Düzce fault. Turkey J Seismol 25(9):803–823. https://doi.org/10.1007/s10950-021-10002-7
  • 57. Luen B, Stark PB (2012) Poisson tests of declustered catalogues. Geophys J Int 189:691–700
  • 58. Marzocchi W, Taroni M (2014) Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 104(4):1838–1845. https://doi.org/10.1785/0120130300
  • 59. Marzocchi W, Spassiani I, Stallone A, Taroni M (2020) How to be fooled searching for significant variations of the b-value. Geophys J Int 220(3):1845–1856. https://doi.org/10.1093/gji/ggz541
  • 60. Masana E et al (2018) First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): los trances site. Geol Acta 16(4):461–476. https://doi.org/10.1344/GeologicaActa2018.16.4.8
  • 61. McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85(1):275–284
  • 62. McGuire RK (1976) FORTRAN computer program for seismic risk analysis. US Geological Survey Open–File Report 76–67
  • 63. McGuire RK (1978) Fortran computer for seismic risk analysis using faults as earthquake sources, U.S. Geological Survey, Open File Report 78–1007
  • 64. Meghraoui M, Cisternas A, Philip H (1986) Seismo tectonics of the lower Chéliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics 5(6):809–836
  • 65. Meghraoui M (1988) Géologie des zones sismiques du nord de l’Algérie paléosismologie tectonique active et synthèse sismotectonique. PhD Thesis, Université de Paris XI Centre d'Orsay (France), 356pp (in French)
  • 66. Mejri L (2012) Tectonique quaternaire, paleosismicité et sources sismogénique en Tunisie Nord-orientale : étude de la faille d’Utique. Université Toulouse III, Paul Sabatier/Université Tunis El Manar, Thèse de Doctorat (In French)
  • 67. Mokrane A, Ait Messaoud A, Sébaï A, Menia A, Ayadi A, Bezzeghoud A, Benhallou H (1994) Les séismes en Algérie de 1365 à 1992 Centre de Recherche en Astronomie Astrophysique et Géophysique (Département : Etudes et Surveillance Sismique), Algiers, Algeria 277 pp (In French)
  • 68. Mortgat CP, Shah HC (1978) Seismic hazard analysis of Algeria: technical report the John A Blume earthquake engineering center department of civil engineering. Stanford University, Stanford
  • 69. Mourabit T, Abou Elenean KM, Ayadi A et al (2014) Neo-deterministic seismic hazard assessment in North Africa. J Seismol 18:301–318
  • 70. Mueller CS (2010) The influence of maximum magnitude on seismic hazard estimates in the central and eastern United States. Bull Seismol Soc Am 100(2):699–711
  • 71. Nanjo K, Yoshida A (2018) A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nat Commun 9:1117. https://doi.org/10.1038/s41467-018-03514-3
  • 72. Nanjo K, Hirata N, Obara K, Kasahara K (2012) Decade–scale decrease in b-value prior to the M9–class 2011 Tohoku and 2004 Sumatra quakes. Geophys Res Lett. https://doi.org/10.1029/2012GL052997
  • 73. Patrick E, Fischer F (1970) A generalized k-nearest neighbor rule. Inf Control 16:128–152
  • 74. Peláez JA, Hamdache M, Casado CL (2003) Seismic hazard in northern Algeria using spatially smoothed seismicity. Tectonophysics 372:105–119
  • 75. Peláez JA, Hamdache M, Casado CL (2005) Updating the probabilistic seismic hazard values of Northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure Appl Geophys 162:2163–2177
  • 76. Peláez JA et al (2007) A catalogue of main Moroccan earthquakes from 1045 to 2005. Seismol Res Lett 78:614–621
  • 77. Pisarenko VF (1991) Statistical evaluation of maximum possible earthquake. Phys Solid Earth 27:757–776
  • 78. Pisarenko VF, Lyubushin A, Lysenko VB, Golubeva TV (1996) Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bull Seismol Soc Am 86:691–700
  • 79. Poggi V, Garcia-Peláez J, Syron R, Pagani M, Gee R (2020) A probabilistic seismic hazard model for North Africa. Bull Earthquake Eng 18:2917–2951
  • 80. Popandopoulos GA, Baskoutas I, Chatziioannou E (2016) The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg-Richter law b-value parameter using the earthquake catalog of Greece. Izvestiya Phys Solid Earth 52(2):195–209
  • 81. Poujol A et al (2004) Active tectonics of the Northern Rif (Morocco) from geo–morphic and geochronological data. J Geodyn 77:70–88
  • 82. Reiter L (1990) Earthquake hazard analysis Issues and Insights. Columbia University Press, New York, p 254 (ISBN 0–231–06534–5)
  • 83. Rothé JP (1950) Les séismes de Kherrata et la sismicité de l’Algérie, Bulletin du Service de la Carte Géologique de l’Algérie, 4e série Géophysique, Vol. 3, Mende, France, pp 40
  • 84. Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self–similarity. Nature 337:251–253
  • 85. Scholz CH (1968) The frequency–magnitude relation of micro–fracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415
  • 86. Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42:1399–1402
  • 87. Schorlemmer D, Wiemer S, Wyss M (2005) Variation of earthquake–size distribution across different stress regimes. Nature 437:539–542
  • 88. Sebrier M et al (2006) Some recent developments on the Maghreb geodynamics. Comptes Rendus Géosciences 338(1–2):65–79
  • 89. Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72(5):1677–1687
  • 90. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London
  • 91. Smith WD (1981) The b-value as an earthquake precursor. Nature 289:136–139
  • 92. Soumaya A et al (2016) Seismotectonic and seismic Hazard map of Tunisia. Geophysical Research Abstracts 18, The EGU 2016, 8266
  • 93. Talbi A, Yamazaki F (2009) A mixed model for earthquake interevent times. J Seismol 14(2):289–307
  • 94. Talbi A, Nanjo K, Zhuang J, Hamdache M (2013) Comparison of seismicity declustering methods using a probabilistic measure of clustering. J Seismol 17:1041–1061
  • 95. Taroni M, Akinci A (2021) Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys J Int 224(2):1174–1187. https://doi.org/10.1093/gji/ggaa462
  • 96. Toda S (2020) Paleoseismology. In: Gupta H (ed) Encyclopedia of solid earth geophysics encyclopedia of earth sciences series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_9-1
  • 97. Utsu T (2002) Relationships between magnitude scales. Int Handbook Earthquake Eng Seismol 81:733–746
  • 98. Van der Woerd J et al (2014) The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence. J Geodyn 77:89–109
  • 99. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude rupture length rupture width rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002
  • 100. Wheeler RL (2009) Methods of Mmax estimation east of the Rocky Mountains. Open–File Report 2009. U S Geological Survey pp 44
  • 101. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382
  • 102. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska the Western United States and Japan. Bull Seismol Soc Am 90(4):859–869
  • 103. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698
  • 104. Yelles-Chaouche A et al (2013) The new Algerian Digital Seismic Network (ADSN): towards an earthquake early-warning system. Adv Geosci 36:31–38
  • 105. Yelles-Chaouche A et al (2017) The large Algerian earthquakes (267 A.D.-2017). Física De La Tierra. https://doi.org/10.5209/FITE.57617
  • 106. Zöller G, Holschneider M (2016) The earthquake history in a fault zone tells us almost nothing about mmax. Seismol Res Lett 87(1):132–137. https://doi.org/10.1785/0220150176
  • 107. Zöller G, Holschneider M, Hainzl S (2013) The maximum earthquake magnitude in a time horizon: theory and case studies. Bull Seismol Soc Am 103(2A):860–875. https://doi.org/10.1785/0120120013
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa292869-9723-469f-9f32-f6bf3baa34e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.