PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlation between Lüders band formation and precipitation kinetics behaviour during the industrial processing of interstitial free high strength steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lüders band formation in steels is critical to surface finish during automobile panel manufacturing. This research reports on the problem of Lüders band formation in interstitial free high strength steel compositions (IFHS-steels). The study investigates the effect of chemical composition and processing parameters on the formation of Lüders bands in IFHS-steels. It correlates the problem of Lüders band formation with precipitation kinetics behaviour during the industrial processing of IFHS-steels. Four different compositions viz. Ti-stabilized, Ti-Nb stabilized, low Ti-low Nb, and high Ti-low Nb with high Al were investigated. Annealing parameters were similar to industrial practice followed for batch and continuous annealing lines in steel manufacturing plants. Stabilized IFHS-steel compositions possessing excess of stabilizing elements (Ti, Nb, etc.) for stabilization of interstitial elements (C, N) also showed the problem of Lüders band formation. The new type of IFHS composition containing high Al, investigated in this research, showed no Lüders band formation during batch annealing cycles along with adequate mechanical properties (YS: 190–202 MPa; Δr-value: 0.25). Thus, steel compositions with high Al content processed through batch annealing cycle offer a practical solution to the problem of Lüders band formation in IFHS-steels.
Rocznik
Strony
469--483
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
autor
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
  • Tata Motors Ltd., Jamshedpur 831010, India
  • Tata Steels Limited, Jamshedpur 831001, India
  • Tata Steels Limited, Jamshedpur 831001, India
  • CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
Bibliografia
  • [1] S.K. Paul, Effect of anisotropy on ratcheting: an experimental investigation on IFHS steel sheet, Mater. Sci. Eng. A 538 (2012) 349–355.
  • [2] S. Hoile, Processing and properties of mild interstitial free steels, Mater. Sci. Technol. 16 (10) (2000) 1079–1093.
  • [3] S. Carabajar, J. Merlin, V. Massardier, S. Chabanet, Precipitation evolution during the annealing of an interstitial-free steel, Mater. Sci. Eng. A 281 (1–2) (2000) 132–142.
  • [4] D. Verma, N.K. Mukhopadhyay, G.V. Sastry, R. Manna, Microstructure and mechanical properties of ultrafinegrained interstitial-free steel processed by ECAP, Trans. Indian Inst. Met. 70 (4) (2017) 917–926.
  • [5] R.K. Ray, P. Ghosh, D. Bhattacharjee, Effects of composition and processing parameters on precipitation and texture formation in microalloyed interstitial free high strength (IFHS) steels, Mater. Sci. Technol. 25 (9) (2009) 1154–1167.
  • [6] C.Y. Qiu, L. Li, L.L. Hao, J.G. Wang, X. Zhou, Y.L. Kang, Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel, Int. J. Miner. Met. Mater. 25 (5) (2018) 536–546.
  • [7] P. Ghosh, C. Ghosh, R.K. Ray, D. Bhattacharjee, Precipitation behavior and texture formation at different stages of processing in an interstitial free high strength steel, Scr. Mater. 59 (3) (2008) 276–278.
  • [8] P. Ghosh, C. Ghosh, R.K. Ray, Thermodynamics of precipitation and textural development in batch-annealed interstitial-free high-strength steels, Acta Mater. 58 (11) (2010) 3842–3850.
  • [9] P. Ghosh, R.K. Ray, C. Ghosh, D. Bhattacharjee, Comparative study of precipitation behavior and texture formation In continuously annealed Ti and Ti+ Nb added interstitial-free high-strength steels, Scr. Mater. 58 (11) (2008) 939–942.
  • [10] W.C. Jeong, Role of aluminum in hot-rolled ultra-low-carbon Nb-interstitial-free steels, Metall. Mater. Trans. A 37 (12) (2006) 3737–3739.
  • [11] H. Kang, C.I. Garcia, K. Chin, A.J. Deardo, Effect of aluminium content on the mechanical properties of dual stabilized Ti–Nb interstitial free high strength steel (IF-HSS), ISIJ Int. 47 (3) (2007) 486–492.
  • [12] D.W. Beardsmore, J.Q. da Fonseca, J. Romero, C.A. English, S. R. Ortner, J. Sharples, A.H. Sherry, M.A. Wilkes, Study of Lüders phenomena in reactor pressure vessel steels, Mater. Sci. Eng. A 588 (2013) 151–166.
  • [13] D. Akama, N. Nakada, T. Tsuchiyama, S. Takaki, A. Hironaka, Discontinuous yielding induced by the addition of nickel to interstitial-free steel, Scr. Mater. 82 (2014) 13–16.
  • [14] S. Gao, A. Shibata, M. Chen, N. Park, N. Tsuji, Correlation between continuous/discontinuous yielding and Hall–Petch slope in high purity iron, Mater. Trans. 55 (1) (2014) 69–72.
  • [15] J. Zhang, Y. Cao, G. Jiang, H. Di, Effect of annealing temperature on the precipitation behavior and texture evolution in a warm-rolled P-containing interstitial-free high strength steel, Acta Metall. Sin. (Engl. Lett.) 27 (3) (2014) 395–400.
  • [16] W. Wang, R. Xu, Y. Hao, Q. Wang, L. Yu, Q. Che, et al., Corrosion fatigue behavior of friction stir processed interstitial free steel, J. Mater. Sci. Technol. 34 (1) (2018) 148–156.
  • [17] S.S. Sahay, B.H. Kumar, S.J. Krishnan, Microstructure evolution during batch annealing, J. Mater. Eng. Perform. 12 (6) (2003) 701–707.
  • [18] S.S. Sahay, A.M. Kumar, A. Chatterjee, Development of integrated model for batch annealing of cold rolled steels, Ironmak. Steelmak. 31 (2) (2004) 144–152.
  • [19] K. Banerjee, Physical metallurgy and drawability of extra deep drawing and interstitial free steels, in: Recrystallization, InTech, 2012.
  • [20] J. Shi, D. Cui, On optimizing batch annealing for the production of IF steels, Mater. Manuf. Process. 18 (1) (2003) 51–66.
  • [21] G. Anand, A. Sinha, P.P. Chattopadhyay, On the plasticity of interstitial-free steel subjected to cryogenic rolling followed by annealing, Mater. Manuf. Process. 28 (3) (2013) 242–248.
  • [22] B.J. Duggan, Y.Y. Tse, G. Lam, M.Z. Quadir, Deformation and recrystallization of interstitial free (IF) steel, Mater. Manuf. Process. 26 (1) (2011) 51–57.
  • [23] P.F. Wang, Z. Han, K. Lu, Enhanced tribological performance of a gradient nanostructured interstitial-free steel, Wear 402 (2018) 100–108.
  • [24] N.D. Sardinha, I.C. Santos, B.V. Andrade, R.A. Botelho, R.V. Oliveira, S.B. Diniz, A.D. Paula, L.P. Brandao, Mechanical properties and crystallographic texture of symmetrical and asymmetrical cold rolled IF steels, Mater. Res. 19 (5) (2016) 1042–1048.
  • [25] R. Yoda, I. Tsukatani, T. Inoue, T. Saito, Effect of chemical composition on recrystallization behavior and r-value in Tiadded ultra low carbon sheet steel, ISIJ Int. 34 (1) (1994) 70–76.
  • [26] R.K. Ray, P. Ghosh, An overview on precipitation and texture formation in IF and IFHS steels during processing, Mater. Manuf. Process. 25 (1–3) (2010) 195–201.
  • [27] M.A. Altuna, A. Iza-Mendia, I. Gutiérrez, Precipitation of Nb In ferrite after austenite conditioning. Part II: strengthening contribution in high-strength low-alloy (HSLA) steels, Metall. Mater. Trans. A 43 (12) (2012) 4571–4580.
  • [28] Y. Tanaka, T. Urabe, Y. Nagataki, A new type of high strength steel for exposed panels-high-strength steel with excellent formability, superior surface precision after press forming, and uniform surface appearance, JFE Tech. Rep. 4 (4) (2004) 17–27.
  • [29] P. Ghosh, R.K. Ray, B. Bhattacharya, S. Bhargava, Precipitation and texture formation in two cold rolled and batch annealed interstitial-free high strength steels, Scri. Mater. 55 (3) (2006) 271–274.
  • [30] R.K. Ray, A. Haldar, Texture development in extra low carbon (ELC) and interstitial free (IF) steels during warm rolling, Mater. Manuf. Process. 17 (5) (2002) 715–729.
  • [31] D. Llewellyn, R. Hudd, Steels: Metallurgy and Applications, Elsevier, 1998.
  • [32] R. Rana, S.B. Singh, Automotive Steels: Design, Metallurgy, Processing and Applications, Woodhead Publishing, 2016.
  • [33] R. Saha, R.K. Ray, D. Bhattacharjee, Attaining deep drawability and non-earing properties in Ti+ Nb interstitialfree steels through double cold rolling and annealing, Scr. Mater. 57 (3) (2007) 257–260.
  • [34] G. Bhargava, L. Patra, S. Pai, D. Mishra, A study on microstructure, texture and precipitation evolution at different stages of steel processing in interstitial free high strength steels, Trans. Indian Inst. Met. 70 (3) (2017) 631–637.
  • [35] P. Ghosh, R.K. Ray, Deep drawable steels, in: Automotive Steels, 2017, 113–143.
  • [36] A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A 62 (1) (1949) 49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa279d37-a93a-4e5f-b405-15184a05045f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.