PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of the auto-ignition and DDT by AMR

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our previous work, combustion flows in a smooth tube are simulated with fixed computational meshes to investigate the auto-ignition and the subsequent deflagration to detonation transition (DDT). In this paper, we use another approach, which is adaptive mesh refinement (AMR) technology, to reproduce above detailed DDT as a pilot study of the further study of three-dimensional (3D) DDT with high resolutions and detailed chemical reaction mechanism. The auto-ignition and DDT are successfully captured by AMR system with a much smaller cost. The results are similar to the previous ones. In this paper especially the formation of precursor shock is discussed in details to present how the piston effect works and why the present initial condition can allow a rapid DDT. It is shown that due to the choice of initial conditions, the flame acceleration process in this work is carried out in a very short time because that the reflected shocks with an adequate strength successfully generate a region with high pressure and another region on the flame tip with a fresh gas of a high density. Subsequently, the pressure accumulation benefits the temperature distribution in the form of shock heating, especially in the boundary layer. An auto ignition triggers the DDT in the heated mixture in front of the flame.
Rocznik
Strony
79--92
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho Chiyoda-ku, Tokyo 102-8554, Japan
  • Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho Chiyoda-ku, Tokyo 102-8554, Japan
  • Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho Chiyoda-ku, Tokyo 102-8554, Japan
autor
  • Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui-chou, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
autor
  • Faculty of Engineering, Graduate School of Engineering, Gifu University 1-1 Yanagido, Gifu 501-1193, Japan
Bibliografia
  • [1] Oran ES, Gamezo VN. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust Flame 2007: 148: 4–47.
  • [2] Kailasanath K. Review of propulsion applications of detonation waves. AIAA J 2000: 38(9): 1698-1708.
  • [3] Wolański P. Detonative propulsion. Proc Combust Inst 2013: 34(1): 125-158.
  • [4] Lu FK, Braun EM. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J Propul Power 2014: 30(5): 1125-1142.
  • [5] Zhou R, Wu D, Wang J. Progress of continuously rotating detonation engines. Chinese J of Aeronaut 2016: 29(1): 15-29.
  • [6] Bertherlot M, Vielle P. Nouvelles recherches sur la propagation des phenomenes explosifs dans les gaz. Ann de Phys et Chim 1881: 28: 289.
  • [7] Mallard E, Le Chatelier HL. Recherches experimental et theoretique sur le combustion des melanges gaseaux explosifs. Ann Min 1881: 8: 274–618.
  • [8] Brinkley SR, Jr Lewis B. On the transition from deflagration to detonation. Sympos (Int) Combust 1958: 7(1): 807-811.
  • [9] Karlovitz B. Selected Combustion Problems. London: Butterworths; 1954, p. 176.
  • [10] Oppenheim AK, Laderman AJ, Urtiew PA. The onset of detonation. Combust Flame 1962: 6: 193-197.
  • [11] Urtiew PA, Oppenheim AK. Experimental observations of the transition to detonation in an explosive gas. Proc R Soc London Ser A 1966: 295(1440): 13-28.
  • [12] Lee JHS. Initiation of gaseous detonation. Annu Rev Phys Chem 1977: 28(1): 75-104.
  • [13] Shepherd JE, Lee JHS. On the transition from deflagration to detonation. Major Research Topics in Combustion, New York: Springer; 1992, p. 439-487.
  • [14] Markstein GH. Nonsteady Flame Propagation. New York: Macmillan; 1964, Chapter D.
  • [15] Khokhlov AM, Oran ES, Thomas GO. Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames. Proc Combust Inst 1999: 117(1): 323-339.
  • [16] Heidari A, Wen J, Flame acceleration and transition from deflagration to detonation in hydrogen explosions. Int J Hydrogen Energy 2014: 39(11): 6184-6200.
  • [17] Hayashi AK, Shimada H, Eto K, Misawa J, Shiokawa S, Sato H, Tsuboi N, Lee JHS. Numerical and experimental study on the effect of obstacles on DDT process. Shock Waves 2005: 781-788.
  • [18] Gaathaug A, Vaagsaether K, Bjerketvedt D, Experimental and numerical investigation of DDT in hydrogen-air behind a single obstacle. Int J Hydrogen Energy 2012: 37(22): 17606-17615.
  • [19] Gamezo VN, Ogawa T, Oran ES. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc Combust Inst 2007: 31(2): 2463-2471.
  • [20] Valiev D, Bychkov V, Akkerman VY, Law CK, Eriksson LE. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combust Flame 2010: 157(5): 1012-1021.
  • [21] Xiao H, Houim RW, Oran ES. Formation and evolution of distorted tulip flames. Proc Combust Inst 2015: 162(11): 4084-4101.
  • [22] Xiao H, Houim RW, Oran ES. Effects of pressure waves on the stability of flames propagating in tubes. Proc Combust Inst 2017: 36(1): 1577-1583.
  • [23] Han W, Gao Y, Law CK. Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: An integrated mechanistic study. Proc Combust Inst 2017: 176: 285-298.
  • [24] Tsuboi N, Morii Y, Hayashi AK. Two-dimensional numerical simulation on galloping detonation in a narrow channel, Proc Combust Inst 2013: 34(2): 1999-2007.
  • [25] Chandler J, Ferguson RE, Forbes J, Kuhl AL, Oppenheim AK, Spektor R. Confined Combustion of TNT Explosion Products in Air. No. UCRL-JC-131748. Lawrence Livermore National Laboratory, Livermore, CA, 1998.
  • [26] Tang X, Asahara M, Hayashi AK, Tsuboi N. Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: The starting transient evolution and Mach disk stabilization. Int J Hydrogen Energy 2017: 42(10): 7120-7134.
  • [27] Zuzio D, Estivalèzes JL, DiPierro B. An improved multiscale Eulerian–Lagrangian method for simulation of atomization process. Comput Fluids, 2016.
  • [28] Hamzehloo A, Aleiferis PG. Numerical modelling of transient under-expanded jets under different ambient thermodynamic conditions with adaptive mesh refinement. Int J Heat Fluid Flow 2016: 61: 711-729.
  • [29] Berger MJ. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. Ph.D. thesis, Stanford University; 1982.
  • [30] Berger MJ, Colella P. Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 1989: 82(1): 64-84.
  • [31] Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, O’Shea B. A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parall Distrib Comput 2014: 74(12): 3217-3227.
  • [32] MacNeice P, Olson KM, Mobarry C, De Fainchtein R, Packer C. PARAMESH: A parallel adaptive mesh refinement community toolkit. Comput Phys Commun 2000: 126(3): 330-354.
  • [33] Fryxell B, Olson KM, Ricker P, Timmes FX, Zingale M, Lamb DQ, Tufo H. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astro J Suppl Series 2000: 131(1): 273-334.
  • [34] Dziemińska E, Hayashi AK. Auto-ignition and DDT driven by shock wave–boundary layer interaction in oxyhydrogen mixture. Int J Hydrogen Energy 2013: 38(10): 4185-4193.
  • [35] Fukuda M, Dziemińska E, Hayashi AK, Yamada E, Tsuboi N. Effect of wall conditions on DDT in hydrogen–oxygen mixtures. Shock Waves 2013: 23(3): 191-200.
  • [36] Frolov SM, Noskov MA, Wolański P. Auto-ignition in nearwall boundary layer as a cause of deflagration to detonation transition. Arch Combust 1994: 14(1-2): 65-72.
  • [37] Noskov MA, Frolov SM, Wolański P, Tatschl R. The effect of shock induced turbulent boundary layer on deflagration to detonation transition in ducts. Arch Combust 1995; 15(1-2):50-58.
  • [38] Choi JY, Jeung IS, Yoon Y. Scaling effect of the combustion induced by shock-wave boundary-layer interaction in premixed gas. Sympos (Int) Combust 1998: 27(2): 2181-2188.
  • [39] Manzhalei VI, Mitrofanov VV, Subbotin VA. Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust Explo Shock 1974: 10(1): 89-95.
  • [40] Dziemińska E. Shock Wave-Boundary Layer Interaction in Reactive Oxyhydrogen Mixture. Ph.D. thesis, Aoyama Gakuin University; 2013.
  • [41] Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Rev 2001: 43(1): 89-112.
  • [42] Liou MS, Wada Y. A flux splitting scheme with high resolution and robustness for discontinuities. AIAA Pap 1994: 94-0083.
  • [43] Yee HC. Upwind and symmetric shock-capturing schemes. NASA Technical Memorandum 1987: No. 89464.
  • [44] Hong ZK, Davidson DF, Hanson RK. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust Flame 2011: 158: 633-644.
  • [45] Kahaki AF, Phase-Field Modeling of Multiphase Flows Using the Lattice Boltzmann Method with Adaptive Mesh Refinement, Ph.D. thesis, the City University of New York, 2015.
  • [46] Tang XM, Asahara M, Hayashi AK, Tsuboi N. Numerical investigation of a high pressure hydrogen jet of 82 MPa with adaptive mesh refinement: the starting transient evolution and Mach disk stabilization. Int J Hydrogen Energy 2017: 42(10): 7120-7134.
  • [47] Petersen EL, Hanson RK. Reduced kinetics mechanisms for ram accelerator combustion. J Propul Power 1999: 15(4): 591-600.
  • [48] Lewis B. Selected Combustion Problems. London: Butterworths; 1954, p. 176.
  • [49] Clavin P, Searby G. Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars. Cambridge University Press; 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa22d728-beae-4d8c-922c-940bea94aafa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.