PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved SOM algorithm for damage characterization based on visual sensing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of concrete structure health monitoring, accurately and swiftly identifying damage characteristics stands as a pivotal task. To enhance the accuracy and efficiency of concrete damage identification, this research proposes an improved Self-Organizing Map algorithm based on visual sensing. By optimizing feature extraction and representation methods, introducing novel learning strategies, and incorporating spatial attention mechanisms, the model becomes adept at capturing and identifying concrete damage features more effectively. Additionally, employing stochastic gradient descent as an optimization algorithm enhances the model training efficiency. Experimental results showcase that the model exhibits a detection time of merely 0.8 seconds, while demonstrating outstanding fitting and clustering performance, achieving an actual accuracy of 98.2%. Compared to methods based on digital image monitoring and deep learning detection, it shows an improvement of 12.7% and 31.8%, respectively. The proposed enhanced model significantly augments the accuracy and efficiency of concrete damage identification, providing an effective solution for the health monitoring of concrete structures, particularly in scenarios requiring large-scale and real-time monitoring. This advancement elevates the practicality and convenience of concrete damage detection, propelling progress in the field of building safety.
Rocznik
Strony
129--142
Opis fizyczny
Bibliogr. 20 poz., il., tab.
Twórcy
autor
  • School of Civil Engineering, Xinyang College, Xinyang, China
autor
  • School of Foreign Languages, Gushi Vocational Education Center, Xinyang, China
Bibliografia
  • [1] B. Sangoju, R. Gopal, and B.H. Bharatkumar, “A review on performance-based specifications toward concrete durability”, Structural Concrete, vol. 22, no. 5, pp. 2526-2538, 2021, doi: 10.1002/suco.201900542.
  • [2] P. Zhang, H. Zhang, G. Cui, X. Yue, and D. Hui, “Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2”, Nanotechnology Reviews, vol. 10, no. 1, pp. 504-517, 2021, doi: 10.1515/ntrev-2021-0040.
  • [3] M.R. Nashta, R. Taghipour, M. Bozorgnasab, and H. Mirgobabaei, “A novel method for identification of damage location in frame structures using a modal parameters-based indicator”, Archives of Civil Engineering, vol. 68, no. 3, pp. 633-643, 2022, doi: 10.24425/ace.2022.141907.
  • [4] Q. Zhang, K. Barri, S.K. Babanajad, and A.H. Alavi, “Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain”, Engineering, vol. 7, no. 12, pp. 1786-1796, 2021, doi: 10.1016/j.eng.2020.07.026.
  • [5] C. Hebbi and H. Mamatha, “Comprehensive dataset building and recognition of isolated handwritten Kannada characters using machine learning models”, Artificial Intelligence and Applications, vol. 1, no. 3, pp. 179-190, 2023, doi: 10.47852/bonviewAIA3202624.
  • [6] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, no. 1, pp. 6308-6325, 2020, doi: 10.1109/JSTARS.2020.3026724.
  • [7] Y. Zhu, F. Zhuang, J. Wang, G. Ke, J. Chen, J. Bian, and Q. He, “Deep subdomain adaptation network for image classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 4, pp. 1713-1722, 2021, doi: 10.1109/TNNLS.2020.2988928.
  • [8] Y. Sun, B. Xue, M. Zhang, G.G. Yen, and J. Lv, “Automatically designing CNN architectures using the genetic algorithm for image classification”, IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3840-3854, 2020, doi: 10.1109/TCYB.2020.2983860.
  • [9] C. Yuan, B. Xiong, X. Li, X. Sang, and Q. Kong, “A novel intelligent inspection robot with deep stereo vision for three-dimensional concrete damage detection and quantification”, Structural Health Monitoring, vol. 21, no. 3, pp. 788-802, 2022, doi: 10.1177/14759217211010238.
  • [10] N. Burud and J.M.C. Kishen, “Damage detection using wavelet entropy of acoustic emission waveforms in concrete under flexure”, Structural Health Monitoring, vol. 20, no. 5, pp. 2461-2475, 2021, doi: 10.1177/1475921720957096.
  • [11] L. Zhang, J. Shen, and B. Zhu, “A research on an improved Unet-based concrete crack detection algorithm”, Structural Health Monitoring, vol. 20, no. 4, pp. 1864-1879, 2021, doi: 10.1177/1475921720940068.
  • [12] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on convolutional neural networks (CNN) in vegetation remote sensing”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173, no. 1, pp. 24-49, 2021, doi: 10.1016/j.isprsjprs.2020.12.010.
  • [13] Y. Ji, H. Zhang, Z. Zhang, and M. Liu, “CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances”, Information Sciences, vol. 546, no. 1, pp. 835-857, 2021, doi: 10.1016/j.ins.2020.09.003.
  • [14] X. Zhu, K. Guo, S. Ren, B. Hu, M. Hu, and H. Fang, “Lightweight image super-resolution with expectation-maximization attention mechanism”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 3, pp. 1273-1284, 2021, doi: 10.1109/TCSVT.2021.3078436.
  • [15] W. Gardner, R. Maliki, S.M. Cutts, B.W. Muir, D. Ballabio, D.A. Winkler, and P.J. Pigram, “Self-organizing map and relational perspective mapping for the accurate visualization of high-dimensional hyperspectral data”, Analytical Chemistry, vol. 92, no. 15, pp. 10450-10459, 2020, doi: 10.1021/acs.analchem.0c00986.
  • [16] Q. Ye, P. Huang, Z. Zhang, Y. Zheng, L. Fu, and W. Yang, “Multiview learning with robust doublesided twin SVM”, IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 12745-12758, 2022, doi: 10.1109/TCYB.2021.3088519.
  • [17] P. Padmapoorani, S. Senthilkumar, and R. Mohanraj, “Machine learning techniques for structural health monitoring of concrete structures: A systematic review”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 47, no. 4, pp. 1919-1931, 2023, doi: 10.1007/s40996-023-01054-5.
  • [18] L.A. Silva, V.R.Q. Leithardt, V.F.L. Batista, G.V. González, and J.F.D.P. Santana, “Automated road damage detection using UAV images and deep learning techniques”, IEEE Access, vol. 11, no. 1, pp. 62918-62931, 2023, doi:10.1109/ACCESS.2023.3287770.
  • [19] M. Mishra, V. Jain, S.K. Singh, and D. Maity, “Two-stage method based on the you only look once framework and image segmentation for crack detection in concrete structures”, Architecture, Structures and Construction, vol. 3, no. 4, pp. 429-446, 2023, doi:10.1007/s44150-022-00060-x.
  • [20] M.A. Nyathi, J. Bai, and I.D.Wilson, “Deep learning for concrete crack detection and measurement”, Metrology, vol. 4, no. 1, pp. 66-81, 2024, doi:10.3390/metrology4010005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa1a4ee1-7d27-441f-954b-48c5917d8d0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.