PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of a class of holomorphic functions associated with tangent function

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we define new class of holomorphic functions associated with tangent function. Furthermore, we examine the differential subordination implementation results related to Janowski and tangent functions. Also, we investigate some extreme point theorem and partial sums results, necessary and sufficient conditions, convex combination, closure theorem, growth and distortion bounds, and radii of close-to-starlikeness and starlikeness for this newly defined functions class of holomorphic functions.
Wydawca
Rocznik
Strony
art. no. 20230142
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Institute of Numerical Sciences, Kohat University of Sciences and Technology, Kohat 26000, Pakistan
  • Institute of Numerical Sciences, Kohat University of Sciences and Technology, Kohat 26000, Pakistan
  • Special Interest Group on Modeling and Data Analytics, Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
autor
  • School of Mathematical Sciences, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
  • Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
Bibliografia
  • [1] W. Ma and D. A. Minda, Unified treatment of some special classes of univalent functions, Int. J. Math. Math. Sci. 2011 (2011), 18–36.
  • [2] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonici Math. 23 (1971), 159–177.
  • [3] S. S. Kumar and K. Arora, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc. 59 (2022), 993–1010.
  • [4] K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif, and S. Arjika, A study of sharp coefficient bounds for a new subfamily of starlike functions, J. Inequ. Appl. 202 (2021), 1–20.
  • [5] R. Mendiratta, S. Nagpal, and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365–386.
  • [6] N. E. Cho, V. Kumar, S. S. Kumar, and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232.
  • [7] F. Zulfiqar, S. N. Malik, M. Raza, and M. Ali, Fourth-Order Hankel determinants and Toeplitz determinants for convex functions connected with sine functions, J. Math. 2022 (2022), 156–164.
  • [8] R. M. Ali, N. E. Cho, V. Ravichandran, and S. S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2021), 1017–1026.
  • [9] S. S. Kumar, V. Kumar, V. Ravichandran, and N. E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequ. Appl. 2013 (2013), 176.
  • [10] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Compex Anal. Oper. Theory 12 (2018), 1179–1191.
  • [11] E. Paprocki and J. Sokól, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat, 20 (1996), 89–94.
  • [12] M. Raza, J. Sokól, and S. Mushtaq, Differential subordinations for analytic functions, Iran. J. Sci. Technol. Trans. A sci. 43 (2019), 883–890.
  • [13] L. Shi, H. M. Srivastava, M. G. Khan, N. Khan, B. Ahmad, B. Khan, and W. K. Mashwani, Certain subclasses of analytic multivalent functions associated with petal-shape domain, Axioms 10 (2021), 291.
  • [14] M. G. Khan, B, Khan, J. Gong, F. Tchier, and F. M. O. Tawfiq, Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains, Symmetry 15 (2023), 2004, DOI: https://doi.org/10.3390/sym15112004.
  • [15] I. S. Jack, Functions starlike and convex order alpha, J. Math. Soc. 2 (1971), 469–474.
  • [16] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221–227.
  • [17] M. Jabeen, S. N. Malik, S. Mahmood, S. M. J. Riaz, and M. S. Ali, On q-convex functions defined by the q-Ruscheweyh derivative operator in conic regions, J. Math. 2022 (2022), 1–12.
  • [18] J. Cao, H.-Li Zhou, and S. Arjika, Generalized q-difference equations for (q,c)-hypergeometric polynomials and some applications, Ramanujan J. 60 (2023), 1033–1067.
  • [19] J. Cao, J.-Y Huang, M. Fadel, and S. Arjika, A review of q-difference equations for Al-Salam-Carlitz polynomials and applications to U(n+1) type generating functions and Ramanujanas integrals, Mathematics 11 (2023), 1655, DOI: https://doi.org/10.3390/math11071655.
  • [20] J. Cao, F. Qi, and W.-S. Dui, Closed-form formulas for the nth derivative of the power-exponential function xx , Symmetry 15 (2023), 323, DOI: https://doi.org/10.3390/sym15020323.
  • [21] M. G. Khan, B. Khan, F. M. O. Tawfiq, and J.-S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms 12 (2023), 868, DOI: https://doi.org/10.3390/axioms12090868.
  • [22] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, and B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Mathematics 8 (2023), 21993–22008, DOI: https://doi.org/10.3934/math.20231121.
  • [23] M. G. Khan, W. K. Mashwani, J-S. Ro, and B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Mathematics 8 (2023), 27396–27413, DOI: https://doi.org/10.3934/math.20231402.
  • [24] T. G. Shaba, S. Araci, B. O. Adebesin, F. Tchier, S. Zainab, and B. Khan, Sharp Bounds of the Fekete-Szegö problem and second Hankel determinant for certain Bi-Univalent functions defined by a Novel q-differential operator associated with q-Limaçon domain, Fractal Fract. 7 (2023), 506, DOI: https://doi.org/10.3390/fractalfract7070506.
  • [25] C. Zhang, B. Khan, T. G. Shaba, J.-S. Ro, S. Araci, and M. G. Khan, Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent functions, Fractal Fract. 6 (2022), 420, DOI: https://doi.org/10.3390/fractalfract6080420.
  • [26] Q. Hu, T. G. Shaba, J. Younis, B. Khan, W. K. Mashwani, and M. Caglar, Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomial, Appl. Math. Sci. Eng. 30 (2022), 501–520.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa17b669-5472-48e8-baf2-91ac283780c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.