PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Single Degree of Freedom Simulation Model of Underwater Explosion Impact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hulls of naval ships are exposed to forces and moments coming from internal and external sources. Usually, these are interactions that can be described mathematically by harmonic and polyharmonic functions. The shock of UNDEX type (underwater explosion) works completely differently and its time waveform is difficult to describe with mathematical functions as pressure vs. time. The paper presents a simplification of physical and mathematical models of 1-D kickoff pressure whose aim is performance the simulation of the external force of the detonation wave. The proposed models were verified and tuned on naval, sea trials. The main goals of the proposed models are to perform simulation calculations of the detonation pressure for different explosion charge weights from different distances of the UNDEX epicentre for the design process of machine foundation. The effects of pressure are transformed as impulses exposed on shock absorber mounted at light shock machine.
Słowa kluczowe
Rocznik
Strony
341--348
Opis fizyczny
Bibliogr. 8 poz., rys., tab., wykr.
Twórcy
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69, 81-125 Gdynia, Poland
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69, 81-125 Gdynia, Poland
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69, 81-125 Gdynia, Poland
Bibliografia
  • 1. An F. J., Li X., Liu J., Wu C. (2018), Study of explosion loads of near-field underwater explosion, International Journal of Multiphysics, 12 (2): 117-130, doi: 10.21152/1750-9548.12.2.117.
  • 2. Brett J. M. (1998), Numerical modelling of shock wave and pressure pulse generation by underwater explosion, DSTO Aeronautical and Marine Research Laboratory PO Box 4331, Melbourne, Australia.
  • 3. Cole R. H. (1948), Underwater explosions, Princeton University Press, Princeton, doi: 10.5962/bhl.title.48411.
  • 4. Dunbar T. E. (2009), Modelling of close-proximity underwater explosion loads and structural response, Defence R&D Canada – Atlantic, DRDC Atlantic CR 2008-272.
  • 5. Grządziela A. (2011), Ship impact modelling of underwater explosion, Journal of KONES Powertrain and Transport, 18 (2): 145-152.
  • 6. Huang H., Jiao Q. J. Nie J. X., Qin J. F. (2011), Numerical modelling of underwater explosion by one-dimensional ANSYS-AUTODYN, Journal of Energetic Materials, 29 (4): 292-325, doi: 10.1080/07370652.2010.527898.
  • 7. Mair H. U. (1996), Preliminary compilation of underwater explosion benchmarks, Proceedings of the 67th Shock and Vibration Symposium, Volume I, SAVIAC, pp. 361-379.
  • 8. Smith M. J., Lee J. J. (2017), Ship-like target design for underwater explosion experiments, Defence Research and Development Canada, Scientific Report, DRDC-RDDC-2017-R096, September 2017, https://cradpdf.drdc-rddc.gc.ca/PDFS/unc284/p805694_A1b.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa14bf7c-9470-4d34-83ea-bcfdd8f85d08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.