PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dispersion mechanism-induced variations in microstructural and mechanical behavior of CNT-reinforced aluminum nanocomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combination of powder metallurgy and ball milling method has been widely regarded as the most beneficial route for producing multi-walled carbon nanotubes (MWCNTs)-reinforced aluminum matrix composites. In this study, the effects of different milling times (1, 2, 4, and 8 h) on the structural, morphological, and crystallographic properties of MWCNTs-reinforced Al7075 composite powders were characterized by particle size analyzer, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). After the morphological and structural characterization of the milled powders, the microstructural and mechanical properties of the hot-pressed composites were evaluated using an optical microscope, SEM, density, and Brinell hardness measurements. Considering milled powder characterization, the MWCNTs were gradually distributed and embedded within the matrix as the milling time increased. Milling for 8 h resulted in a minimum level of particle size (11 µm) with shortened and uniformly dispersed CNTs. Brinell hardness of the composite increased from 91 to 237 HB -a ⁓%160 after 8 h of milling. Such a remarkable increment in hardness could be attributed to several concurrent strengthening effects related to dispersion, solution, grain refinement, and Orowan looping mechanisms. However, relative density results revealed that the composite produced by 2 h milled powders exhibited the highest density (%99.96). The observed differences between hardness and density results were ascribed to powders’ deteriorated packing and sintering behavior due to an increment in the hardness of particles and variation in particle size range and morphology, which resulted from following different milling protocols.
Rocznik
Strony
art. no. e55, 2022
Opis fizyczny
Bibliogr. 73 poz., rys., wykr.
Twórcy
autor
  • Department of Nanotechnology and Advanced Materials, Institute of Science, Selcuk University, 42075 Konya, Turkey
  • Metallurgical and Material Engineering Department, Necmettin Erbakan University, 42090 Konya, Turkey
  • Metallurgical and Material Engineering Department, Technology Faculty, Selcuk University, 42075 Konya, Turkey
autor
  • Metallurgical and Material Engineering Department, Technology Faculty, Selcuk University, 42075 Konya, Turkey
autor
  • Metallurgical and Material Engineering Department, Necmettin Erbakan University, 42090 Konya, Turkey
  • Mechanical Engineering Department, Technology Faculty, Selcuk University, 42075 Konya, Turkey
  • Department of Mechanical Engineering, Faculty of Engineering, Selcuk University, Akşehir, 42550 Konya, Turkey
  • Faculty of Mechanical Engineering, Opole University of Technology, 76 Proszkowska St., 45-758 Opole, Poland
  • Metallurgical and Material Engineering Department, Technology Faculty, Selcuk University, 42075 Konya, Turkey
Bibliografia
  • 1. Salur E, Aslan A, Kuntoglu M, Gunes A, Sahin OS. Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Compos B. 2019;166:401–13.
  • 2. Salur E, Acarer M, Şavkliyildiz İ. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater Today Commun. 2021;27:102202.
  • 3. Imran M, Khan AA. Characterization of Al-7075 metal matrix composites: a review. J Mater Res Technol. 2019;8:3347–56.
  • 4. Jiang L, Li Z, Fan G, Cao L, Zhang D. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminium composites with a homogenous CNT distribution. Carbon. 2012;50:1993–8.
  • 5. Aslan A, Salur E, Düzcükoğlu H, Şahin ÖS, Ekrem M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Constr Build Mater. 2021;272:121929.
  • 6. Chen M, Fan G, Tan Z, Yuan C, Xiong D, Guo Q, Su Y, Naito M, Li Z. Tailoring and characterization of carbon nanotube dispersity in CNT/6061Al composites. Mater Sci Eng A. 2019;757:172–81.
  • 7. Guo B, Ni S, Yi J, Shen R, Tang Z, Du Y, Song M. Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater Sci Eng A. 2017;698:282–8.
  • 8. Güneş A, Şahin ÖS, Düzcükoğlu H, Salur E, Aslan A, Kuntoğlu M, Giasin K, Pimenov DY. Optimization study on surface roughness and tribological behavior of recycled cast iron reinforced bronze MMCs produced by hot pressing. Materials. 2021;14:3364.
  • 9. Jargalsaikhan B, Bor A, Lee J, Choi H. Al/CNT nanocomposite fabrication on the different property of raw material using a planetary ball mill. Adv Powder Technol. 2020;31:1957–62.
  • 10. Dhore VG, Rathod W, Patil K. Investigation of mechanical properties of carbon nanotubes reinforced aluminium composite by metal injection molding. Mater Today Proc. 2018;5:20690–8.
  • 11. Li Q, Rottmair CA, Singer RF. CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol. 2010;70:2242–7.
  • 12. Yang X, Zou T, Shi C, Liu E, He C, Zhao N. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater Sci Eng A. 2016;660:11–8.
  • 13. Laha T, Chen Y, Lahiri D, Agarwal A. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A. 2009;40:589–94.
  • 14. Mohammed SM, Chen DL. Carbon nanotube-reinforced aluminum matrix composites. Adv Eng Mater. 2020;22:1901176.
  • 15. Fan G, Jiang Y, Tan Z, Guo Q, Xiong D-B, Su Y, Lin R, Hu L, Li Z, Zhang D. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon. 2018;130:333–9.
  • 16 Salur E, Nazik C, Acarer M, Şavklıyıldız İ, Akdoğan EK. Ultra-high hardness in Y2O3 dispersed ferrous multicomponent nano-composites. Mater Today Commun. 2021;28:102637.
  • 17. Abbas A, Huang SJ, Ballokova B, Sülleiová K. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process. Tribol Int. 2020;142:105982.
  • 18. Li M, Chen M, Wu Z, Liu J. Carbon nanotube grafted with poly-alcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manage. 2014;83:325–9.
  • 19. Deyab M. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell. J Power Sources. 2014;268:50–5.
  • 20. Yang J, Xiao S, Yuyong C, Xu L, Wang X, Zhang D, Li M. Effects of nano-Y2O3 addition on the microstructure evolution and tensile properties of a near-α titanium alloy. Mater Sci Eng A. 2019;761:137977.
  • 21. Kwon H, Park DH, Silvain JF, Kawasaki A. Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol. 2010;70:546–50.
  • 22. Jagannatham M, Chandran P, Sankaran S, Haridoss P, Nayan N, Bakshi SR. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: a review. Carbon. 2020;160:14–44.
  • 23. Nazik C, Tarakcioglu N, Ozkaya S, Erdemir F, Canakci A. Determination of effect of B 4 C content on density and tensile strength of AA7075/B 4 C composite produced via powder technology. Int J Mater Mech. 2016;4:251–61.
  • 24. Casati R, Fiocchi J, Fabrizi A, Lecis N, Bonollo F, Vedani M. Effect of ball milling on the ageing response of Al2618 composites reinforced with SiC and oxide nanoparticles. J Alloys Compd. 2017;693:909–20.
  • 25. Canakci A, Varol T, Ozsahin S. Prediction of effect of volume fraction, compact pressure and milling time on propertiesof Al-Al 2 O 3 MMCs using neural networks. Met Mater Int. 2013;19:519–26.
  • 26. Salur E, Aslan A, Kuntoğlu M, Acarer M. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv Powder Technol. 2021;32:3826–44.
  • 27. Ghasali E, Sangpour P, Jam A, Rajaei H, Shirvanimoghaddam K, Ebadzadeh T. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch Civ Mech. 2018;18:1042–54.
  • 28. Poirier D, Gauvin R, Drew RA. Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Compos A. 2009;40:1482–9.
  • 29. Chen B, Li Z, Shen J, Li S, Jia L, Umeda J, Kondoh K, Li J.Mechanical properties and strain hardening behavior of aluminium matrix composites reinforced with few-walled carbon nanotubes. J Alloys Compd. 2020;826:154075.
  • 30. Turan ME. Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminium matrix composites. J Alloys Compd. 2019;788:352–60.
  • 31. Mohammed S, Chen D, Liu Z, Ni D, Wang Q, Xiao B, Ma Z. Deformation behavior and strengthening mechanisms in a CNT-reinforced bimodal-grained aluminum matrix nanocomposite. Mater Sci Eng A. 2021;817:141370.
  • 32. Kim H, Babu J, Kang C. Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A. 2013;573:92–9.
  • 33. Esawi AM, Morsi K, Sayed A, Taher M, Lanka S. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol. 2010;70:2237–41.
  • 34. Li N, Yang C, Li C, Guan H, Fang D, Tao J, Liu Y, Yi J. Carbon nanotubes reinforced aluminum matrix composites with high elongation prepared by flake powder metallurgy. Diamond Relat Mater. 2020;107:107907.
  • 35. Ostovan F, Matori KA, Toozandehjani M, Oskoueian A, Yusoff HM, Yunus R, Ariff AHM, Quah HJ, Lim WF. Effects of CNTs content and milling time on mechanical behavior of MWCNT- reinforced aluminum nanocomposites. Mater Chem Phys. 2015;166:160–6.
  • 36. Deng C, Wang D, Zhang X, Li A. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A. 2007;444:138–45.
  • 37. Kurita H, Kwon H, Estili M, Kawasaki A. Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans. 2011;52:1960–5.
  • 38. Zak AK, Majid WA, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 2011;13:251–6.
  • 39. Williamson G, Smallman R III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag. 1956;1:34–46.
  • 40. Velumani S, Narayandass SK, Mangalaraj D. Structural characterization of hot wall deposited cadmium selenide thin films. Semicond Sci Technol. 1998;13:1016.
  • 41. D.A. Long, Raman spectroscopy, New York, 1 (1977).
  • 42. Wang L, Choi H, Myoung J-M, Lee W. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon. 2009;47:3427–33.
  • 43. Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A. 2017;96:57–66.
  • 44. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.
  • 45. Basariya MR, Srivastava V, Mukhopadhyay N. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des. 2014;64:542–9.
  • 46. Esawi AM, Morsi K, Sayed A, Gawad AA, Borah P. Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater Sci Eng A. 2009;508:167–73.
  • 47. Zare H, Jahedi M, Toroghinejad MR, Meratian M, Knezevic M. Compressive, shear, and fracture behavior of CNT reinforced Al. matrix composites manufactured by severe plastic deformation. Mater Des. 2016;106:112–9.
  • 48. Mokdad F, Chen D, Liu Z, Xiao B, Ni D, Ma Z. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon. 2016;104:64–77.
  • 49. Jagannatham M, Sankaran S, Haridoss P. Microstructure and mechanical behavior of copper coated multiwall carbon nano-tubes reinforced aluminum composites. Mater Sci Eng A. 2015;638:197–207.
  • 50. Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Qian WZ, Wei F. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater. 2014;24:2772–81.
  • 51. Ezatpour H, Parizi MT, Ebrahimi G. The extraordinary effect of very low content of hybrid carbonaceous reinforcement on the microstructural and mechanical properties of 7075 aluminum alloy. Arch Civ Mech. 2021;21:1–24.
  • 52. Şahin ÖS, Güneş A, Aslan A, Salur E, Karadağ HB, Akdemir A. Low-velocity impact behavior of porous metal matrix composites produced by recycling of bronze and iron chips. Iran J Sci Technol Trans Mech Eng. 2019;43:53–60.
  • 53. Usca ÜA, Uzun M, Kuntoğlu M, Şap S, Giasin K, Pimenov DY. Tribological aspects, optimization and analysis of Cu-B-CrC composites fabricated by powder metallurgy. Materials. 2021;14:4217.
  • 54. Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S. Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J Mater Res Technol. 2021. https://doi.org/10.1016/j.jmrt.2021.11.114.
  • 55. R.M. German, Particle packing characteristics, (1989).
  • 56. Ozkaya S, Canakci A. Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technol. 2016;297:8–16.
  • 57. Dolata-Grosz A, Śleziona J, Formanek B. Structure and properties of aluminium cast composites strengthened by dispersion phases. J Mater Process Technol. 2006;175:192–7.
  • 58. Zebarjad SM, Sajjadi S. Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method. Mater Des. 2006;27:684–8.
  • 59. Xie K, Zhang G, Huang H, Zhang J, Liu Z, Cai B. Investigation of the main strengthening mechanism of carbon nanotube reinforced aluminum composites. Mater Sci Eng A. 2021;804:140780.
  • 60. Park JG, Keum DH, Lee YH. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon. 2015;95:690–8.
  • 61. Yoo S, Han S, Kim W. Strength and strain hardening of aluminium matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scripta Mater. 2013;68:711–4.
  • 62. Hassanzadeh-Aghdam M, Mahmoodi M. A comprehensive analysis of mechanical characteristics of carbon nanotube-metal matrix nanocomposites. Mater Sci Eng A. 2017;701:34–44.
  • 63. George R, Kashyap K, Rahul R, Yamdagni S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater. 2005;53:1159–63.
  • 64. Chen B, Li S, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K. Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J Alloys Compd. 2015;651:608–15.
  • 65. Majid M, Majzoobi GH, Noozad GA, Reihani A, Mortazavi SZ, Gorji M. Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Met. 2012;31:372–8.
  • 66. Vozniakovskii A, Kidalov S, Kol’tsova T. Development of composite material aluminum-carbon nanotubes with high hardness and controlled thermal conductivity. J Compos Mater. 2019;53:2959–65.
  • 67. Raju KSR, Raju VR, Raju PRM, Rajesh S, Partha G. Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique. J Mater Res Technol. 2016;5:241–9.
  • 68. Tolochko OV, Koltsova TS, Bobrynina EV, Rudskoy AI, Zemtsova EG, Kirichenko SO, Smirnov VM. Conditions for production of composite material based on aluminum and carbon nanofibers and its physic-mechanical properties. Nanomaterials. 2019;9:550.
  • 69. Zhou S-M, Zhang X-B, Ding Z-P, Min C-Y, Xu G-L, Zhu W-M. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A. 2007;38:301–6.
  • 70. Manjunatha L, Yunus M, Alsoufi MS, Dinesh P. Development and comparative studies of aluminum-based carbon nano tube metal matrix composites using powder metallurgy and stir casting technology. Int J Eng Res. 2017;8:521–6.
  • 71. Elshalakany AB, Osman T, Khattab A, Azzam B, Zaki M. Microstructure and mechanical properties of MWCNTs reinforced A356 aluminum alloys cast nanocomposites fabricated by using a combination of rheocasting and squeeze casting techniques. J Nano-mater. 2014. https://doi.org/10.1155/2014/386370.
  • 72. Abbasipour B, Niroumand B, Vaghefi SM. Compocasting of A356-CNT composite. Trans Nonferrous Met Soc China. 2010;20:1561–6.
  • 73. Alizadeh A, Abdollahi A, Biukani H. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J Alloys Compd. 2015;650:783–93.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa13f16b-0087-4062-abcb-e2627b133203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.