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1. Introduction 

A significant problem in mathematics and computer sciences [1] is to solve any nonlinear equation g(x) = 

h(x). This means the issue of approximation x in equation f(x)=0 where f=g-h. Two-dimensional data can be 

treated as points on the curve. Many numerical methods for nonlinear equations are known as iterative methods: 

bisection, regula falsi, Newton’s method (also called as the Newton-Raphson method), Steffensen’s method, 

Brent’s method, Broyden’s method, fixed-point iterations, inverse interpolation, the secant method [2]. These 

methods can be used for any function, but sometimes there are troubles. For example in Newton’s method we may 

found difficulties in calculating derivative of a function or troubles with bad starting point of iteration. Generally 

iterative methods need many assumptions about function (monotonicity, convexity, derivative, starting point). 

Some methods are used only for polynomials (Muller’s, Laguerre’s, Bairstow’s, Jenkins-Traub’s methods). 

Nonlinear systems are still opened for researchers [3]. 

This paper is dealing with novel method of root’s approximation by using a family of Hurwitz-Radon 

matrices. Method of Hurwitz-Radon Matrices (MHR) does not need any assumptions about function. The only 

information about curve is the set of at least five interpolation nodes and a zero of the function between them. 

Proposed method of Hurwitz-Radon Matrices (MHR) is used in data interpolation and then calculations to solve 

the nonlinear equation are introduced. MHR connects two significant problems in mathematics: interpolation of 

the function and the solution of nonlinear equation [4]. MHR method uses two-dimensional data for knowledge 

representation [5] and computational foundations [6]. Also medicine [7], industry and manufacturing are looking 

for the methods connected with geometry of the curves [8]. So suitable data representation and precise solving of 

any equation [9] are key factors in many applications of artificial intelligence and numerical methods [10]. 

 

2. Information about Function 

Each nonlinear equation is represented by f(x) = 0 and succeeding points (xi,yi)  R
2
 of function f 

(interpolation nodes) as follows in proposed MHR method: 

1. first node (x1,y1) and last node (xL,yL) must fulfill a condition y1·yL < 0; 

2. at least three nodes (x2,y2), (x3,y3), (x4,y4), for example equidistant between first and last node, have to be 

calculated (L = 5) if MHR method is used with matrices of dimension N = 2. 

 

Condition 1 is well known in numerical methods for existing a zero of the function. Condition 2 is connected 

with important features of MHR method: MHR version with matrices of dimension N = 2 (as MHR-2) requires at 

least five nodes (L = 5), MHR version with matrices of dimension N = 4 (as MHR-4) requires at least nine nodes 

(L=9) and MHR version with matrices of dimension N = 8 (as MHR-8) requires at least 17 nodes (L = 17). 



 

 

Fig. 1. Five nodes of function and a root between first and second node (MS Excel graph).  

Fig.1 presents the graph of function f(x) = x
3
+x

2
-x+1 with nodes: first (-2;-1), (-1.75; 0.453125), (-1.5;1.375), 

(-1.25;1.859375) and last (-1;2). All five nodes will be applied in MHR calculations, but we will search a root of 

function only between nodes (-2;-1) and         (-1.75;0.453125). The approximation of a zero point of the function 

is possible using novel MHR method. 

3. Interpolation of the Points 

The key question exists in many branches of science: is it possible to find a method of nonlinear equation 

solution without iterations of numerical methods [11]? This paper aims at giving the positive answer to this 

question. Method of Hurwitz – Radon Matrices (MHR), described in this paper, is computing points between two 

successive nodes for searching a root of the function. The curve or function in MHR method is parameterized for 

real number   [0;1] in the range of two successive interpolation nodes. 

3.1. The Operator of Hurwitz-Radon  

Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers about specific class of 

matrices in 1923, working on the problem of quadratic forms. Matrices Ai, i = 1,2…m satisfying 

AjAk+AkAj = 0, Aj
2 
= -I  for  j ≠ k; j, k = 1,2...m  

are called a family of Hurwitz - Radon matrices. A family of Hurwitz - Radon (HR) matrices has important 

features [12]: HR matrices are skew-symmetric (Ai
T 

= - Ai) and reverse matrices are easy to find (Ai
-1 

= - Ai). Only 

for dimension N = 2, 4 or 8 the family of HR matrices consists of N - 1 matrices. For N = 2 there is one matrix: 
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For N = 4 there are three HR matrices with integer entries: 
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For N = 8 we have seven HR matrices with elements 0, ±1. So far HR matrices are applied in electronics [13]: in 

Space-Time Block Coding (STBC) and orthogonal design [14], also in signal processing [15] and Hamiltonian 

Neural Nets [16]. 

If one curve is described by a set of following points {(xi,yi), i = 1, 2, …, n} then HR matrices combined with 

the identity matrix IN are used to build the orthogonal and discrete Hurwitz - Radon Operator (OHR). For nodes 

(x1,y1) and (x2,y2) OHR M of dimension N = 2 is constructed: 
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For nodes (x1,y1), (x2,y2), (x3,y3) and (x4,y4) OHR of dimension N = 4 is constructed: 
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where 

443322110 yxyxyxyxu  ,   344312211 yxyxyxyxu  , 

241342312 yxyxyxyxu  ,  142332413 yxyxyxyxu  . 

 

For nodes (x1,y1), (x2,y2),… and (x8,y8) OHR of dimension N = 8 is built [17] similarly as (1) and (2): 
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The components of the vector u = (u0, u1,…, u7)
T
, appearing in the matrix M (3), are defined by (4) in the similar 

way to (1)-(2) but in terms of the coordinates of the above 8 nodes. Note that OHR operators M (1)-(3) satisfy the 

condition of interpolation 

Mx = y (5) 

for x = (x1,x2…,xN)
T
  R

N
, x  0, y = (y1,y2…,yN)

T
  R

N
, N = 2, 4 or 8. 

3.2. The Method of Hurwitz-Radon Matrices 

Key question looks as follows: how can we compute coordinates of points settled between the interpolation 

nodes [18]? The answer is connected with novel MHR method [19]. On a segment of a line every number “c” 

situated between “a” and “b” is described by a linear (convex) combination c =   a + (1 - )  b for 

 

ab

cb




  [0;1]. (6) 

The average OHR operator M2 of dimension N = 2, 4 or 8 is constructed as follows: 

102 )1( MMM    (7) 

with the operator M0 built (1)-(3) by “odd” nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 built (1)-(3) by “even” 

nodes (x2=b,y2), (x4,y4), …, (x2N,y2N). Having the operator M2 it is possible to reconstruct the second coordinates of 

points (x,y) in terms of the vector C defined with 

ci = x2i-1+ (1-)x2i     ,    i = 1, 2,…, N (8) 



 

as C = [c1, c2,…, cN]
T
. The required formula is similar to (5): 

CM)C(Y  2  (9) 

in which components of vector Y(C) give the second coordinate of the points (x,y) corresponding to the first 

coordinate, given in terms of components of the vector C. 

 

Calculations of unknown coordinates for curve points using (6)-(9) are called by author the method of 

Hurwitz - Radon Matrices (MHR) [20]. Here is the application of MHR method (Fig.2) for function f(x) = x
3
+x

2
-

x+1 with nodes as Fig.1 and computed 99 points between each pair of nodes ( = 0.01, 0.02,…, 0.99). MHR-2 

means MHR version with matrices of dimension N = 2. 

 

Fig. 2. Function f(x) = x
3
+x

2
-x+1 with 396 interpolated points using MHR-2 method  

with 5 nodes. 

Solving the equation x
3
+x

2
-x+1 = 0 via MHR interpolation, as it was said under Fig.1, we will search a root of the 

function only between nodes (-2;-1) and (-1.75;0.453125). Points calculated between other pairs of nodes are 

useless in the process of root approximation and they do not have to be computed. Considering points between 

nodes (-2;-1) and  

(-1.75;0.453125), coordinate y is near zero at (-1.835;0.00184). Solution of equation x
3
+x

2
-x+1 = 0 via MHR-2 

method is approximated by x = -1.835. True value is  

x = -1.839. 

The same equation for nodes (-2;-1), (-1.95;-0.662), (-1.9;-0.349), (-1.85;-0.059) and (-1.8;0.208), solved by 

MHR-2 method, gives better result x = -1.839. So shorter distance between first and last node is of course very 

significant. 

4. The Zero of Function via MHR method 

Example 1 

MHR calculations are done for function f(x) = x
3
+ln(7-x) with nodes: (-2;-5.803),  

(-1.75; -3.190), (-1.5;-1.235), (-1.25;0.1571) and (-1;1.0794). So a root of this function is situated between 3
rd

 and 

4
th
 node. MHR-2 interpolation gives the graph of function (Fig.3): 



 

 

Fig. 3. Function f(x) = x
3
+ln(7-x) with 396 interpolated points using MHR-2 method  

with 5 nodes. 

Considering points between nodes (-1.5;-1.235) and (-1.25;0.1571), coordinate y is near zero at (-1.2825;0.00194). 

Solution of equation x
3
+ln(7-x) = 0 via MHR method is approximated by x = -1.2825. True value is hardly 

approximated (even for MathCad) by x = -1.28347. 

Example 2 

MHR calculations are done for function f(x) = x
3
+2x-1 with nodes: (0;-1), (0.25;-0.484), (0.5;0.125), (0.75;0.9219) 

and (1;2). So a zero of this function is situated between 2
nd

 and 3
rd

 node. MHR-2 interpolation gives the graph of 

function (Fig.4): 

 

Fig. 4. Function f(x) = x
3
+2x-1 with 396 interpolated points using MHR-2 method  

with 5 nodes. 

Considering points between nodes (0.25;-0.484) and (0.5;0.125), coordinate y is near zero at (0.4625;0.00219). 

Solution of equation x
3
+2x-1 = 0 via MHR-2 method is approximated by x = 0.4625. The only one real solution of 

this equation is x = 0.453. 

Now MHR calculations are done for the same equation x
3
+2x-1 = 0 with seven nodes between (0;-1) and 

(1;2) for xi = 0; 0.125; 0.25; 0.375; 0.5; 0.625; 0.75; 0.875 and 1. The solution is approximated by MHR-4 method 

with nine nodes. MHR-4 interpolation gives the graph of function (Fig.5): 



 

 

Fig. 5. Function f(x) = x
3
+2x-1 with interpolated points using MHR-4 method with 9 nodes. 

Considering points between nodes (0.375;-0.197) and (0.5;0.125), coordinate y is near zero at (0.45625;0.00018). 

Solution of equation x
3
+2x-1 = 0 via MHR-4 method is approximated by x = 0.45625. This is better result than 

MHR-2: greater number of nodes (with the same distance between first and last) means better approximation. And 

seventeen nodes in MHR-8 guarantee more precise results then MHR-4. 

Example 3 

MHR calculations are done for equation 3-2
x
 = 0 with nodes: (1;1), (1.2;0.7026), (1.4;0.361), (1.6;-0.031) and 

(1.8;-0.482). MHR-2 interpolation gives the graph of function (Fig.6): 

 

Fig. 6. Function f(x) = 3-2
x
 with 396 interpolated points using MHR-2 method with 5 nodes. 

Considering points between nodes (1.4;0.361) and (1.6;-0.031), second coordinate is near zero at (1.586;-

0.000311). Solution of equation 3-2
x
 = 0 via MHR-2 method is approximated by x = 1.586. Precise solution x = 

log23 is approximated by 1.585. 

 

Interpolated values, calculated by MHR method, are applied in the process of solving the nonlinear equations. 

Shorter distance between first and last node or greater number of nodes guarantee better approximation. 

Approximated solutions of nonlinear equations are used in many branches of science. MHR joins two important 

problems in computer sciences: interpolation of the function with the solution of nonlinear equation. 

5. Conclusions 

The method of Hurwitz-Radon Matrices leads to curve interpolation [21] and approximation of nonlinear 

equation solution depending on the number and location of nodes. No characteristic features of function are 

important in MHR method: polynomial or not, monotonicity, convexity, derivative, starting point. These features 

are very significant for iterative numerical methods. MHR method gives the possibility of reconstruction a curve 

and searching for a root of the function. The only condition is to have a set of nodes according to assumptions in 

MHR method. Main features of MHR method are: accuracy of the equation solution depends on the number of 

nodes and the distance between first and last node (MHR-4 is more precise than MHR-2 and MHR-8 is more 



 

precise than MHR-4); interpolation of a curve consists of L points is connected with the computational cost of 

rank O(L); MHR is well-conditioned method (orthogonal matrices); MHR is dealing with local operators: average 

OHR operators are built by successive 4, 8 or 16 data points, what means smaller computational costs then using 

all nodes; MHR is not an affine interpolation [22]. 

Future works are connected with: possibility to apply MHR method to three-dimensional curves (3D data), 

computing the interpolation error, implementation of MHR in object recognition [23], MHR extrapolation method 

[24] and curve parameterization [25]. 
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Abstract 

Mathematics need suitable methods to approximate a zero of the function. Coordinate x for f(x)=0 is crucial in a 

large number of calculations because each equation can be transformed into f(x)=0. A novel method of Hurwitz-

Radon Matrices (MHR) can be used in approximation of a root of function in the plane. The paper contains a way 

of data approximation via MHR method to solve any equation. Proposed method is based on the family of 

Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal 

vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are 

represented by discrete set of curve f points. It is shown how to create the orthogonal OHR operator and how to 

use it in a process of data interpolation. MHR method is interpolating the curve point by point without using any 

formula or function. 

Streszczenie 

Matematyka wymaga odpowiednich metod przybliżania miejsca zerowego funkcji. Współrzędna x w równaniu 

f(x)=0 jest kluczowa w wielu przypadkach, ponieważ dowolne równanie nieliniowe może zostać przedstawione 

jako f(x)=0. Nowa metoda Macierzy Hurwitza-Radona (MHR) może zostać użyta w rozwiązywaniu dowolnego 

równania z jedną niewiadomą. Artykuł zawiera sposób przybliżania pierwiastka funkcji. Metoda ta jest oparta na 

rodzinie macierzy Hurwitza-Radona (HR). Macierze HR są skośno-symetryczne i składają się z kolumn 

tworzących ortogonalne wektory. W pracy pokazano jak konstruować Operator Hurwitza-Radona (OHR) oraz jak 

wykorzystać go w procesie rozwiązywania równania. Krzywa płaska opisana jest za pomocą punktów 

węzłowych. Metoda MHR interpoluje funkcję punkt po punkcie bez użycia wzoru opisującego krzywą. 

  


